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Extended test-particle method for predicting the inter- and intramolecular
correlation functions of polymeric fluids
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The Percus’ test-particle method is extended to predict the inter- and intramolecular correlation
functions of polymeric fluids using a density functional theory developed earlier@J. Chem. Phys.
117, 2368 ~2002!#. The calculated inter- and intramolecular distribution functions as well as the
site–site correlation functions agree well with the results from Monte Carlo simulation for freely
jointed hard-sphere chains. Compared with the integral-equation approaches and alternative density
functional theories, the present method is free of molecular simulations as input and has the
advantage of self-consistency among inter- and intramolecular correlation functions and
thermodynamic properties. ©2003 American Institute of Physics.@DOI: 10.1063/1.1539840#
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I. INTRODUCTION

The conventional method for representing the mic
scopic structures of uniform polymeric fluids is from th
polymer integral equation theory originally proposed
Chandler and Andersen for small rigid molecules,1 and sub-
stantially expanded by Schweizer and co-workers
polymers.2,3 Like the Ornstein–Zernike theory for mon
atomic fluids, the polymer integral equation theory forma
connects the intramolecular correlation function with the
termolecular total and direct correlation functions of a po
meric fluid. The intramolecular correlation function d
scribes the average configuration of a polymeric molec
that is, except for rigid molecules that have only one fix
configuration, coupled with the intermolecular total and
rect correlation functions. For systems with known intram
lecular correlation functions~e.g., small rigid molecules
polymer melts!, the intermolecular total and direct correl
tion functions can be solved from the polymer integral eq
tion theory conjugated with a suitable closure that defines
additional relation between total and direct correlation fu
tions. There are at least two well-recognized difficulties
the application of the polymer integral-equation theory: Fir
it is often subtle to develop an appropriate closure for s
tems with both repulsive and attractive potentials and s
ond, except for rigid molecules, self-consistency betwe
inter- and intramolecular correlation functions is achiev
through a complementary single-chain molecular simulati
Besides, the integral equation approach suffers inconsiste
among different routes for thermodynamic properties and
cause calculation of thermodynamic variables requires r
able structural properties from low to high densities, the
tegral equation approach is often inconvenient for pha
diagram calculations. Nevertheless, polymer integ
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equation theory has been successfully applied to descri
the microscopic structures of a broad variety of polyme
systems, including solutions of flexible and semiflexib
polymers, polyelectrolytes, polymer melts, block copo
mers, and liquid crystals.4

An alternative approach for representing both structu
and thermodynamic properties of polymeric fluids was ba
on chemical equilibrium proposed by Chandler and Prat5,6

and along similar lines, by Wertheim.7,8 The equivalence of
the theory by Chandler and Pratt and the thermodyna
perturbation theory~TPT! by Wertheim was demonstrated b
Kierlik and Rosinberg before.9,10 In this alternative approach
a polymeric system is represented as an effective associa
system of monomers where in the limit of complete assoc
tion, the original polymer chains can be formed by chemi
reactions. The excess Helmholtz energy due to the polym
ization~or chain formation! is related to the association equ
librium through the multibody cavity correlation functions o
the monomeric fluid.11–14The polymerization approach give
self-contained structural and thermodynamic properties
employs no molecular simulations as input.9,10 While this
approach provides reasonable thermodynamic properties
intermolecular correlation functions, it is unable to pred
the nonideal behavior of intramolecular correlation functio
of polymeric fluids.9,10 Recently, Stell and co-workers15–17

proposed a product-reactant Ornstein–Zernike appro
~PROZA! based on Wertheim’s thermodynamic perturbati
theory and polymer Percus–Yevick closure. PROZA yie
analytical expressions for the average monomer–mono
radial distribution functions and the compressibility of pol
meric fluids that both are in good agreement with simulat
results. Similar approaches based on Wertheim’s theory h
been used by other groups.18–24 As in Wertheim’s original
theory, all polymerization-based integral equation theor
fail to represent the nonideal behavior of the intramolecu
correlation functions.

As proposed long ago by Percus,25 the structure of a
uniform fluid can be represented by the local inhomogene

,

il:
5 © 2003 American Institute of Physics
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of density distributions around an arbitrarily fixed partic
Percus’ method was recently used by Yethiraj and cowork
to investigate the intermolecular correlation functions of ta
gentially connected and fused hard-sphere chains.26 While
the test-particle method is convenient for calculating the
dial distribution functions of monatomic fluids, its applic
tion for polymers involves a complicated external field th
depends on the positions of all fixed segments. As a re
the site–site correlation functions can only be calculated
couple with a two-molecule simulation.26

In this work, we extend Percus’ test-particle method
polymeric fluids and investigate the inter- and intramolecu
correlation functions as well as the site–site distribut
functions using a density-functional theory propos
earlier.27 Different from the test-particle method used b
Yethiraj and co-workers,26 only one segment~instead of the
entire polymer chain! is fixed and the segment-segment co
relation functions are directly calculated from the dens
distributions of segments from the tethered polymer ch
and those from the free chains. This extended test-par
method avoids molecular simulations as input and provi
both intra- and intermolecular correlation functions direc
Although this work concerns only the freely jointed har
sphere chains as the model system, a similar approach sh
be applicable to systems with more realistic potentials.

II. TEST-PARTICLE METHOD FOR POLYMERIC FLUIDS

Many years ago Percus suggested that the radial di
bution functions of a uniform fluid could be obtained fro
the density profiles around a test molecule fixed at the ori
Percus’ idea provides a convenient way to derive the clos
equations for the integral-equation theory of monatomic
ids and more important, self-consistent structural proper
of uniform systems by using a density-functional theo
While the application of Percus’ method for simple fluids
relatively straightforward,28 calculation of the local density
distributions of a polymeric fluid is more difficult because
one molecule that contains multiple segments is fixed at
origin, the external field on the ‘‘free’’ molecules depends
the configuration of the fixed molecule. As a result, the si
site intermolecular correlation functions can only be cal
lated through a complementary Monte Carlo simulation26

However, if only one segment from a polymeric molecule
fixed at the origin, the distributions of other segments fro
the tethered molecule as well as the segments from the
molecules can be calculated simultaneously by minimiza
of the grand potential. As for monatomic fluids, these dis
bution functions are directly related to the inter- and intram
lecular correlation functions of the polymeric fluid. Com
pared with the scenario where an entire molecule is fix
one obvious advantage of this method is that the exte
field for calculating the density distributions is spherica
symmetric. Moreover, this method avoids the ensemble
erages over all configurations of the fixed molecule a
thereby eliminating extra molecular simulations.
Downloaded 10 Feb 2003 to 138.23.168.115. Redistribution subject to A
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To fix the idea, we consider the microscopic structure
a model polymeric fluid consisting of tangentially connect
hard-sphere chains~Fig. 1!. Suppose that one segment fro
an arbitrarily selected chain is fixed at the origin. The se
ments of free molecules, designated asA, are sequentially
ranked along the backbone while the tethered molecule,
ignated asB, is distinguished from the free molecules b
separating into two fragments at the fixed point. These t
fragments, also sequentially ranked, are labeled asC andD,
respectively.

At equilibrium, the density distributions of free chain
and the tethered fragments satisfy the variational relation

dV

dr~A!~R~A!!
5

dV

dr~C!~R~C!!
5

dV

dr~D !~R~D !!
50, ~1!

where V stands for the grand potential functiona
r ( l )(R( l )), l 5A, C, and D, are density profiles, andR( l )

5$r 1
( l ) ,r 2

( l ) , ...,r Ml

( l ) % is a composite vector that specifies th

positions of Ml segments of chainl. The grand potential
functional for determining density profiles must be suppli
by an adequate density-functional theory for the polyme
system.

The segmental distributions of the free molecules arou
the fixed segment is related to the intermolecular site–
correlation functions,

gi j ~r !5rsi, j
~A!~r !/rA , ~2!

wherersi, j
(A) (r ) is the density profile of segmenti on the free

molecules around the fixed segmentj, and rA is the bulk
density of segmenti. Because all segments along the po
meric chain are distinguishable,rA is the same as the bul
molecular density. Similarly, the distributions of the se
ments from fragmentsC and D are directly related to the
intramolecular correlation functions,

wi j ~r !5rsi, j
~B!~r !, ~3!

wherersi, j
(B) (r ) is the density of segmenti from the tethered

chain B. Because there is only one tethered polymer cha
the segmental densities of chainB satisfy the normalization
condition,

FIG. 1. A schematic representation of the extended test-particle metho
polymeric fluids. Here a middle segment from a hard-sphere 8-mer~filled
circle! is fixed at the origin. The density distributions of segments from
tethered fragments~B&D ! and the free molecules~A! are related to the
intra- and intermolecular segment–segment correlation functions.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3837J. Chem. Phys., Vol. 118, No. 8, 22 February 2003 Molecular correlation functions of polymeric fluids
E rsi, j
B ~r !dr51. ~4!

The site–site inter- and intramolecular correlation fun
tions specify all detail microscopic structures of a polyme
fluid. In principle, all these functions can be determined fro
a density functional theory. From the site–site correlat
functions, we can calculate the average intermolecular co
lation function from

g~r !5
1

MA
2 (

i 51

MA

(
j 51

MA

gi j ~r ! ~5!

and the average intramolecular correlation functions from

w~r !5
1

MA
(
i 51

MA

(
j 51

MA

wi j ~r !, ~6!

whereMA is the number of segments at each free molec
A. Average molecular correlation functions are often su
cient to specific the local structures of homopolymers.

III. DENSITY FUNCTIONAL THEORY

The system considered above is equivalent to a mix
of three polymeric components (A1C1D) in a spherically
symmetric external field due to the fixed segment. The d
sity functional theory for inhomogeneous polymeric flui
has been reported before.27 Briefly, the grand potential func
tional V is related to the Helmholtz energy functionalF via a
Legendre transform,

V5F@r~A!~R~A!!,r~C!~R~C!!,r~D !~R~D !!#

1 (
l 5A,C,D

E @C~ l !~R~ l !!2m l #r
~ l !~R~ l !!dR~ l !, ~7!

wheredR( l )5dr1
( l )dr2

( l )
¯dr Ml

( l ) represents a set of differentia

volumes for the polymer chainl of Ml segments,m l is the
polymer chemical potential, andC ( l )(R( l )) denotes the tota
external potential on chainl. The total external potential on
each molecule is equal to the sum of the potential energy
its individual segmentsC ( l )(R( l ))5( i 51

Ml w i
( l )(r i

( l )). For any
segment that is not immediately bonded with the fixed s
ment, the external potential is identical to the segme
segment interaction energy, while for the two segments
are directly connected to the fixed segment, the external
tential includes also the bonding energy. For tangentia
connected hard-sphere chains that are considered in
work, the bonding potential,vb, is given by

exp@2bvb~r i ,r j !#5
d~ ur i2r j u2s!

4ps2 , ~8!

where segmentsi and j are nearest neighbors from the sam
molecule,b21 is the Boltzmann’s constantkB multiplied by
the thermal temperatureT, andd(r ) is the Dirac delta func-
tion.

The Helmholtz energy functionalF can be formally ex-
pressed as an ideal-gas contributionF id plus an excess term
Fex that accounts for intra- and intermolecular interactio
~other than the bonding potentials!,
Downloaded 10 Feb 2003 to 138.23.168.115. Redistribution subject to A
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F5F id1Fex. ~9!

The ideal-gas contribution to the Helmholtz energy fun
tional is exactly known

bF id5 (
l 5A,C,D

E dR~ l !r~ l !~R~ l !!@ ln r~ l !~R~ l !!21#

1b (
l 5A,C,D

E dR~ l !r~ l !~R~ l !!Vb
~ l !~R~ l !!, ~10!

where the total bonding potential for a chainl is

Vb
~ l !~R~ l !!5 (

i 51

Ml21

vb~r i ,r i 11!. ~11!

Because of the bonding potentials on the right-hand side
Eq. ~10!, the Helmholtz energy functional for a polymer
ideal-gas mixture is different from that for a monatomic ide
gas. However, Eq.~10! does not take into account the in
tramolecular interactions other than the direct chain conn
tivity.

To derive the excess Helmholtz energy functional due
both intra- and intermolecular interactions beyond the ch
connectivity, we incorporate a modification of th
fundamental-measure theory~FMT! developed recently28

with the polymerization theory of Chandler and Pratt,5,6 and
Wertheim8

bFex5E dr$Fhs@na~r !#1Fchain@na~r !#%, ~12!

where Fhs@na(r )# and Fchain@na(r )# are, respectively, the
reduced excess Helmholtz energy densities due to h
sphere repulsion and chain connectivity. Different from t
direct bonding potential, the chain connectivity term aris
from the indirect interactions due to the exclude volume
individual segments. In writing Eq.~12!, we assume that the
excess Helmholtz energy functional due to chain connec
ity can be effectively accounted using only segmental de
ties.

As in the original FMT, the scalar and vector weighte
densities are defined as

na~r !5(
l

na l~r !5(
l
E r~ l !~r 8!wl

~a!~r2r 8!dr 8,

~13!

where the subscriptsa50, 1, 2, 3,V1, V2 denote the index
of six weight functionswl

(a)(r ) that characterize the volume
surface area, and surface vector of a spherical particle.
total segmental density of chainl, r ( l )(r ), is given by a sum
of that for individual segments,

r~ l !~r !5(
i 51

Ml

rsi
~ l !~r !5(

i 51

Ml E dR~ l !d~r2r i
~ l !!r~ l !~R~ l !!,

~14!

wherersi
( l )(r ) stands for the local density of segmenti from

chain l.
All weight functions are independent of the density pr

files. Among them, three weight functions are directly rela
to the geometry of a spherical particle of diameters,

wl
~2!~r !5d~s/22r !, ~15!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wl
~3!~r !5Q~s/22r !, ~16!

wl
~V2!~r !5~r /r !d~s/22r !, ~17!

whereQ(r ) is the Heaviside step function, andd(r ) denotes
the Dirac delta function. Integration of the two scalar fun
tions,wl

(2)(r ) andwl
(3)(r ), with respect to the position give

the particle surface area and volume, respectively, and i
gration of the vector functionwl

(V2)(r ) is related to the gra-
dient across a sphere in ther direction. Other weight func-
tions are proportional to the three geometric functions giv
in Eqs.~15!–~17!,

wl
~0!~r !5

wl
~2!~r !

ps2 ; wl
~1!~r !5

wl
~2!~r !

2ps
;

~18!

wl
~V1!~r !5

wl
~V2!~r !

2ps
.

As in our previous work,28 the hard-sphere Helmholt
energy density consists of contributions from scalar weigh
densities and vector weighted densities,

Fhs$na~r !%5Fhs~S!$na~r !%1Fhs~V!$na~r !%, ~19a!

where the superscripts~S! and (V) stand for contributions
from scalar and vector weighted densities, respectiv
given by

Fhs~S!$na~r !%52n0 ln~12n3!1
n1n2

12n3
1

n2
3

36pn3
2

3 ln~12n3!1
n2

3

36pn3~12n3!2 , ~19b!

Fhs~V!$na~r !%52
nV1"nV2

12n3
2

n2nV2"nV2

12pn3
2 ln~12n3!

2
n2nV2"nV2

12pn3~12n3!2 . ~19c!

In the limit of a bulk fluid, the two vector weighted densitie
nV1 and nV2 vanish, and the Helmholtz energy function
becomes identical to that from the Boublik–Mansoor
Carnahan–Starling–Leland~BMCSL! equation of state.29,30

The Helmholtz energy density due to chain formation at
inhomogeneous condition is given by27

Fchain~na!5
12MA

MA
n0AzA ln y11

hs~s,na!

1 (
l 5C,D

n0lz l ln y11
hs~s,na!, ~20!

where z l512nV2l "nV2l /n2l
2 and y11

hs(s,na) is the contact
value of the cavity correlation between segments and ca
expressed as

y11
hs~s,na!5

1

12n3
1

n2sz

4~12n3!2 1
n2

2s2z

72~12n3!3 , ~21!

wherez512nV2"nV2 /n2
2.
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Minimization of the grand potential with respect to th
density profiles of free molecules and the polymeric fra
ments yields the following Euler–Lagrange equations,

r~ l !~R~ l !!5exp@bm l2bVb
~ l !~R~ l !!2bC~ l !~R~ l !!

2bL~ l !~R~ l !!# ~ l 5A,C,D !, ~22!

where L ( l )(R( l ))5dFex/dr ( l )(R( l )) represents an effective
potential field due to intra- and intermolecular interaction
Because the excess Helmholtz energy functional depe
only on the density distributions of individual segments, t
effective potential can be simplified to

L~ l !~R~ l !!5
dFex

dr~ l !~R~ l !!
5(

i 51

Ml dFex

dr~ l !~r i
~ l !!

. ~23!

Substituting Eq.~23! into Eq. ~22! yields

r~ l !~R~ l !!5expH bm l2bVb
~ l !~R~ l !!2b(

i 51

Ml

l i
~ l !~r i

~ l !!J ,

~24a!

wherel i
( l )(r i

( l )) is related to the excess Helmholtz energyFex

and the external potentialw i
( l )(r i

( l )) by

l i
~ l !~r i

~ l !!5
dFex

dr~ l !~r i
~ l !!

1w i
~ l !~r i

~ l !!. ~24b!

Equation~24! indicates that as in a typical self-consisten
field theory, the segment density is determined by the ch
connectivity and an effective external potentiall i

( l )(r i
( l )).

Because Eq.~23! involves only the total segmental densit
the self-consistent field is identical for all segments.

Introducing the segmental densitiesrsi
( l )(r ) into Eq. ~24!

yields a set of coupled integral equations,

rsi
~ l !~r !5E dR~ l !d~r2r i

~ l !!expFbm l2bVb
~ l !~R~ l !!

2b(
j 51

Ml

l j
~ l !~r j

~ l !!G . ~25!

Substitution of Eq.~25! into Eq. ~14! gives the average seg
mental density of chain molecules

r~ l !~r !5exp~bm l !E dR~ l !(
i 51

Ml

d~r2r i
~ l !!

3expF2bVb
~ l !~R~ l !!2b(

j 51

Ml

l j
~ l !~r j

~ l !!G . ~26!

Equation~26! represents the key equation of this work.

IV. NUMERICAL METHOD

Because of the spherical symmetry, the density distri
tions of both free and tethered segments vary only in
radial direction. As a result, the total density profile can
expressed as

r~ l !~r !5r~ l !~r !. ~27!

Subsequently, Eq.~26! can be simplified to27
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rsi
~ l !~r !5exp~bm l !exp@2bl i

~ l !~r !#GL
~ l !i~r !GR

~ l !i~r !

~ l 5A,C,D !. ~28!

In Eq. ~28!, GL
(A) i(r ) is the Green function forl 5A ~free

molecule!, which is determined from the recurrence relatio

GL
~A!i~r !5E dr8 exp@2bl i

~A!~r 8!#

3
r 8u~s2ur 82r u!

2sr
GL

~A!i 21~r 8! ~29!

for i 52,...,MA with GL
(A)1(r )51. Because the external po

tential is the same for all the monomers on the chainA, we
have the additional symmetric relations

GR
~A!M2 i 115GL

~A!i . ~30!

For l 5C and D, the density profiles of the two immediat
neighbors of the fixed segment are given by

rs1
~C!5rs1

~D !5
d~r 2s!

4ps2 . ~31!

The Green function for the next immediate neighbors is
termined from

GL
~ l !2~r !5exp@2bl2

~ l !~s!#
u~s2ur 2su!

2r
~32!

and those for the remaining segments are determined f
the iteration

GL
~ l !i~r !5E dr8 exp@2bl i

~ l !~r 8!#

3
r 8u~s2ur 2r 8u!

2sr
GL

~ l !i 21~r 8! ~33!

for i 53,...,Ml . The functionGR
( l ) i(r ) is calculated from the

recurrence relation,

GR
~ l !i~r !5E dr8 exp@2bl i

~ l !~r 8!#

3
ru~s2ur 82r u!

2sr 8
GR

~ l !i 11~r 8! ~34!

with GR
( l )Ml(r )51.

The chemical potentials for solving the density profil
are obtained directly from Wertheim’s TPT1 equation of st
for bulk hard-sphere-chain fluids31

bmA5 ln rA1MAbmA
hs~rb!1~12MA!F ln y11

hs,b~s!

1rb

] ln y11
hs,b~s!

]rb
G , ~35!

whererb5MArA is the bulk densities of segments,mA
hs is the

excess chemical potential of corresponding hard sph
given by the Carnahan–Starling equation of state.32 Equation
~35! is identical to Eq.~26! in the absence of the extern
potential. The chemical potentials of the fragmentsC andD
Downloaded 10 Feb 2003 to 138.23.168.115. Redistribution subject to A
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are determined by the normalization conditions* 4pr 2rsi
(C)

3(r )dr51, wherei 52,3,...,MC , and* 4pr 2rsi
(D)(r )dr51,

wherei 52,3,...,MD .
In calculating the inter- and intramolecular correlatio

functions, we fix the segments of a polymer chain one by o
and the density distributions around the fixed segment
calculated with Eqs.~28!–~34!. Because of symmetry,MA/2
~if MA is even! or (MA11)/2 ~if MA is odd! calculations are
required for predicting the detail local structures of h
mopolymers consisting ofMA identical segments. While the
amount of calculations would be substantial for long po
mers, we can simplify the procedure by calculating the c
relation functions only related to end and middle segme
because in a long polymer chain, the site–site correla
functions of other segments are expected to be simila
those for the middle segments. The density profiles
solved using the Picard-type iterative method. The iterat
starts with bulk densities as initial guess, the effective fie
l i

( l )(r ), the Green functionsGR
( l ) i(r ) and GL

( l ) i(r ) are then
calculated with the recurrence relations Eqs.~29!–~34!. Sub-
sequently, a set of new density profiles are obtained from
~28!, which are then mixed with the previous results as n
input. The iteration repeats until the percentage chang
smaller than 0.01 at all points. The numerical integrations
performed using the trapezoidal rule with the step sizeDr
50.02s.

V. RESULTS AND DISCUSSION

We have calculated the inter- and intramolecular rad
distribution functions for freely jointed hard-sphere 4-me
8-mers, and 20-mers. Figure 2 compares the calculated in
molecular correlation functions with the Monte Carlo sim
lation data for hard-sphere 4-mers at two packing fractio
h50.1 and 0.4. Here the overall packing fractionh is defined
ash5prs3/6, wherer is the number density of segment
Also shown in Fig. 2 are the theoretical predictions using
alternative density functional theory based on the origi
Percus’ test-particle method.26 While both approaches predic

FIG. 2. The average intermolecular radial distribution functions of ha
sphere 4-mers at packing fractionsh50.1 ~solid circles! and 0.4~solid tri-
angles!. The solid lines are calculated from this work, the dashed lines
from an alternative density functional theory proposed by Yethirajet al., and
the symbols are from molecular simulation~Ref. 26!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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intermolecular correlation functions in good agreement w
simulation results, one significant advantage of the pres
approach is free of two-molecular simulations for interm
lecular structures.

Figures 3–5 compare theoretical predictions with
Monte Carlo simulation data by Chang and Sandler,23 and by
Yethiraj33 for hard-sphere 4-mers, 8-mers, and 20-mers. T
depletion of intermolecular segments at low density is due
the chain connectivity while the opposite trend at high d
sity is due to the packing effect. Except the contact valu
our method gives accurate intermolecular correlation fu
tions including the cusp atr 52s related to the fixed bond
length. In general, the theoretical predictions are in go
agreement with the simulation results at both high and
densities. However, the theory overestimates the inter
lecular radial distribution functions and underestimates
intramolecular radial distribution function near contact as
chain length increases. For the systems considered in
work, the present theory provides slightly more accurate
termolecular correlation functions than Wertheim’s multide
sity integral-equation theory,8,21,23especially for long chains
at low densities.

Figures 3~b!–5~b! present the average nonbonded

FIG. 3. The average correlation functions of freely jointed hard-sph
4-mers: ~a! intermolecular correlation functions, and~b! nonbonded in-
tramolecular correlation functions. The symbols are the simulation va
~Ref. 23! and curves are from the present theory. The overall packing f
tions areh50.0524 ~circles and solid lines!, 0.2618~squares and dashe
lines!, and 0.4189~triangles and dotted–dashed lines!.
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tramolecular radial distribution functions 4pr 2w(r ). The
discontinuity atr 52s is due to the direct interaction be
tween next nearest neighbors along the polymer chain.
r ,2s, the intramolecular correlation function increas
monotonically with separation at low density. However,
shows a minimum at approximatelyr 51.5s as density in-
creases. Forr .2s, our theory reproduces the essential fe
tures of nonmonotonic decaying of the intramolecular cor
lations. While the intramolecular correlation function
predicted from the present theory improves significantly
comparison with alternative approaches in the literature,
agreement between theory and simulation is only semiqu
titative, especially at contact values. The discrepancy
likely related to the approximation in representing the exc
Helmholtz energy functional due to the chain connectiv
~where only two-body correlation functions are used!. When
a segment is fixed at the origin, the intramolecular corre
tion functions are sensitive to multibody correlations amo
the segments belonging to the same molecule.

Finally, Fig. 6 shows the intermolecular site–site rad
distribution functions predicted from the present dens
functional theory and those from the Monte Car
simulation34 for freely jointed hard-sphere 4-mers. Ou
theory gives accurate end–end segment radial distribu
functions at the entire density region, however it overpred
the end–middle and middle–middle segment radial distri
tion functions near contact. In Fig. 7, we compare the th

e

s
-

FIG. 4. Same as in Fig. 3 but for 8-mers.
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retical predictions with Monte Carlo simulation data34 for the
intermolecular site–site radial distribution functions in ha
sphere 8-mers. From Figs. 6 and 7, one can see tha
correlation hole between middle segments is more p
nounced than that between end segments or between an
segment and a middle segment. While our theory pred
correctly the hole effect at low densities, it is not very acc
rate for the contact values of the correlations functions
volving middle segment as the density increases. A poss
improvement of current theory is by introducing the mul
body correlation functions in the chain-connectivity exce
Helmholtz energy functional. Because of the close conn
tion with the neighboring segments, the middle segments
expected to be more sensitive to multibody correlations.

VI. CONCLUSIONS

Correlation functions play a central role in convention
liquid-state theories.25 From the correlation functions, the
modynamic properties of a monatomic or polymeric flu
can be calculated from one of three approaches in statis
mechanics: compressibility equation, virial equation, and
energy equation. One long-standing problem in statist
theory of classical fluids is that because the correlation fu

FIG. 5. The average correlation functions of freely jointed hard-sphere
mers:~a! intermolecular correlation functions, and~b! nonbonded intramo-
lecular correlation functions. The symbols are the simulation values~Ref.
33! and curves are from the present theory. The overall packing fractions
h50.1 ~circles and solid lines!, 0.2 ~squares and dashed lines!, and 0.35
~triangles and dotted–dashed lines!.
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tions are calculated by approximate means, thermodyna
properties from different approaches are often inconsist
Besides, because calculation of thermodynamic proper
involves integration of correlation functions at the ent
range of density, practical applications of the liquid-sta
theories for phase-equilibrium calculations are often seve
limited. Density functional theory, on the other hand,
based on approximations for the excess Helmholtz functio
that, for a uniform fluid, is essentially identical to an equ
tion of state. While little guidelines are available to deri
excess Helmholtz functionals and indeed current applicati

0-

re

FIG. 6. Intermolecular site–site distribution functions of freely jointed ha
sphere 4-mers:~a! g11(r ), ~b! g12(r ), and~c! g22(r ) for the overall packing
fractionsh50.1 ~circles!, 0.2 ~squares!, and 0.34~triangles!. The symbols
are the simulation values~Ref. 34!; the curves are from the present theor
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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are almost exclusively based on the successful results f
liquid-state theories, density functional theory provides
systematic framework to extend the established equation
state for applications to inhomogeneous systems and

FIG. 7. Intermolecular segment–segment distribution functions of fre
jointed hard-sphere 8-mers:~a! g11(r ), ~b! g14(r ), and ~c! g44(r ) for the
overall packing fractionsh50.05 ~circles!, 0.25 ~squares!, and 0.35~tri-
angles!. The symbols are the simulation values~Ref. 34!; the curves are
from the present theory.
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structural properties. Therefore, density functional theory
valuable supplementary of conventional liquid-state theor

In this work, we have extended Percus’ test-parti
method to predict both intra- and intermolecular correlat
functions of bulk polymeric fluids using a density function
theory developed earlier. Applications to freely jointed ha
sphere chains indicate that this method predicts the site–
distribution functions in good agreement with simulation r
sults, especially for the end–end segment radial distribu
functions. In comparison with alternative approaches in
literature, the method reported here has the advantage
self-consistency between structural and thermodyna
properties and it is able to predict the nonideal behavior
intramolecular correlation functions.
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