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The Percus’ test-particle method is extended to predict the inter- and intramolecular correlation
functions of polymeric fluids using a density functional theory developed eadig€hem. Phys.

117, 2368(2002]. The calculated inter- and intramolecular distribution functions as well as the
site—site correlation functions agree well with the results from Monte Carlo simulation for freely
jointed hard-sphere chains. Compared with the integral-equation approaches and alternative density
functional theories, the present method is free of molecular simulations as input and has the
advantage of self-consistency among inter- and intramolecular correlation functions and
thermodynamic properties. @003 American Institute of Physic§DOI: 10.1063/1.1539840

I. INTRODUCTION equation theory has been successfully applied to describing
the microscopic structures of a broad variety of polymeric
The conventional method for representing the micro-systems, including solutions of flexible and semiflexible
scopic structures of uniform polymeric fluids is from the polymers, polyelectrolytes, polymer melts, block copoly-
polymer integral equation theory originally proposed bymers, and liquid crystals.
Chandler and Andersen for small rigid molecutesnd sub- An alternative approach for representing both structural
stantially expanded by Schweizer and co-workers forand thermodynamic properties of polymeric fluids was based
polymers>® Like the Ornstein—Zerike theory for mon- on chemical equilibrium proposed by Chandler and Prtt,
atomic fluids, the polymer integral equation theory formally and along similar lines, by Wertheif? The equivalence of
connects the intramolecular correlation function with the in-the theory by Chandler and Pratt and the thermodynamic
termolecular total and direct correlation functions of a p0|Y'perturbation theoryTPT) by Wertheim was demonstrated by
meric fluid. The intramolecular correlation function de- ijerlik and Rosinberg beforg!%In this alternative approach,
scribes the average configuration of a polymeric moleculgy holymeric system is represented as an effective associating
that is, except for rigid molecules that have only one ﬁxedsystem of monomers where in the limit of complete associa-
configuration, coupled with the intermolecular total and di'tion, the original polymer chains can be formed by chemical
rect correlation functions. For systems with known intramo- o ctions. The excess Helmholtz energy due to the polymer-
lecular correlation functionde.g., small rigid molecules, i, ation (or chain formatiois related to the association equi-
polymer melt$, the intermolecular total and direct correla- jinjym through the multibody cavity correlation functions of
tion functions can be solved from the polymer integral equatne monomeric fluidt-4The polymerization approach gives

tion theory conjugated with a suitable closure that defines aQ.t_contained structural and thermodynamic properties and
additional relation between total and direct correlation func-

i gy ¢ loast t I ed difficu employs no molecular simulations as ingdf. While this
lons. There are at least wo well-recognized dimcutties Onapproach provides reasonable thermodynamic properties and
the application of the polymer integral-equation theory: First,

it is often subtle to develop an appropriate closure for intermolecular correlation functions, it is unable to predict
lcelnsw with Sbuoth e ulsi\\// R ;n d attfa?crti\‘/)erzl otentiilj; and Ssii’the nonideal behavior of intramolecular correlation functions

P pot of polymeric fluids>'° Recently, Stell and co-workéers?t’
ond, except for rigid molecules, self-consistency between . .
. . . : . . proposed a product-reactant Ornstein—Zernike approach
inter- and intramolecular correlation functions is achieved

through a complementary single-chain molecular simulation(PROZA) based on Wertheim's thermodynamic perturbation

Besides, the integral equation approach suffers inconsistentheory and polymer Percus—Yevick closure. PROZA yields

c . ;
among different routes for thermodynamic properties and beglnj}l%tlgfltrieb)(ptirei?Or?sti f?]r thre] di\r/\erag?n n;onoig}ﬁztr—n’;on(:mer
cause calculation of thermodynamic variables requires reliradia’ distribution functions a € compressibility ot poly

able structural properties from low to high densities, the in_meric fluids that both are in good agreement with simulation

tegral equation approach is often inconvenient for phaser_esults. Similar approaches based on Wertheim'’s theory have

24 ; . -
diagram calculations. Nevertheless, polymer integrapeen used by othe_r groub%. As_|n Wertheim S original )
theory, all polymerization-based integral equation theories
fail to represent the nonideal behavior of the intramolecular
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of density distributions around an arbitrarily fixed particle.
Percus’ method was recently used by Yethiraj and coworkers
to investigate the intermolecular correlation functions of tan-
gentially connected and fused hard-sphere ch&iwhile
the test-particle method is convenient for calculating the ra-
dial distribution functions of monatomic fluids, its applica-
tion for polymers involves a complicated external field that
depends on the positions of all fixed segments. As a result,
the site—site correlation functions can only be calculated in
couple with a two-molecule simulatidf.

In this work, we extend Percus’ test-particle method for
polymeric fluids and investigate the inter- and intramolecular

correlation functions as well as the site—site distributionF'G' 1. _Aschematlc repres_entatlon of the extended test-particle r_nethod for
polymeric fluids. Here a middle segment from a hard-sphere 8¢filled

functions using a density-functional theory proposedcircie) is fixed at the origin. The density distributions of segments from the
earlier?” Different from the test-particle method used by tethered fragment$B&D) and the free moleculeéA) are related to the

Yethiraj and co-worker%? only one segmentinstead of the intra- and intermolecular segment—segment correlation functions.
entire polymer chainis fixed and the segment-segment cor-
relation functions are directly calculated from the density
distributions of segments from the .tethered polymer Chfflin To fix the idea, we consider the microscopic structure of
and those from the free chains. This extended test-particlg yodel polymeric fluid consisting of tangentially connected
method avoids molecular simulations as input and prOVideﬁard-sphere chain@ig. 1). Suppose that one segment from
both intra- and intermolecular correlation functions directly. 5, arbitrarily selected chain is fixed at the origin. The seg-
Although this work concerns only the freely jointed hard- ments of free molecules, designatedAgsare sequentially
sphere chains as the model system, a similar approach shouighked along the backbone while the tethered molecule, des-
be applicable to systems with more realistic potentials. ignated asB, is distinguished from the free molecules by
separating into two fragments at the fixed point. These two
fragments, also sequentially ranked, are labele@ asdD,
respectively.

At equilibrium, the density distributions of free chains
and the tethered fragments satisfy the variational relations,

II. TEST-PARTICLE METHOD FOR POLYMERIC FLUIDS

Many years ago Percus suggested that the radial distri- o o oQ
bution functions of a uniform fluid could be obtained from  5p™(R®™) ~ 5p©O(R©) ~ 5pP)(RD))
the density profiles around a test molecule fixed at the origin. ) i
Percus’ idea provides a convenient way to derive the closur¥3’(r|1)ere(,)Q itands for ‘the grand .potent!al functl((ln)nal,
equations for the integral-equation theory of monatomic flu* (,R) )(i) I—A,(l)C,_ and D, are_densny profiles, ar_@
ids and more important, self-consistent structural properties 1'1 "2 ""’rMu} Is a composite vector that specifies the
of uniform systems by using a density-functional theory.Positions of M, segments of chaih. The grand potential
While the application of Percus’ method for simple fluids is functional for determining density profiles must be supplied
relatively straightforward® calculation of the local density DYy an adequate density-functional theory for the polymeric
distributions of a polymeric fluid is more difficult because if System.
one molecule that contains multiple segments is fixed at the 1he segmental distributions of the free molecules around
origin, the external field on the “free” molecules depends onthe fixed segment is related to the intermolecular site—site
the configuration of the fixed molecule. As a result, the site-correlation functions,
site intermolecular correlation functions can only be calcu- gij(f):P(sﬁ}(f)/PA, )
lated through a complementary Monte Carlo simulation.

However, if only one segment from a polymeric molecule isWherepgiA,}(r) is the density profile of segmenbn the free
fixed at the origin, the distributions of other segments frommolecules around the fixed segmgntand p, is the bulk
the tethered molecule as well as the segments from the fredensity of segmenit Because all segments along the poly-
molecules can be calculated simultaneously by minimizatiorineric chain are distinguishablp, is the same as the bulk
of the grand potential. As for monatomic fluids, these distri-molecular density. Similarly, the distributions of the seg-
bution functions are directly related to the inter- and intramo-ments from fragment€ and D are directly related to the
lecular correlation functions of the polymeric fluid. Com- intramolecular correlation functions,

pared with the scenario where an entire molecule is fixed, wi (1) =p®(r) 3
one obvious advantage of this method is that the external " Psiyth):

field for calculating the density distributions is spherically Wherepg?)j(r) is the density of segmeiitfrom the tethered
symmetric. Moreover, this method avoids the ensemble avehain B. Because there is only one tethered polymer chain,
erages over all configurations of the fixed molecule andhe segmental densities of chdnsatisfy the normalization
thereby eliminating extra molecular simulations. condition,

=0, @
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B F=FigtFex. 9
The ideal-gas contribution to the Helmholtz energy func-
The site—site inter- and intramolecular correlation func-tional is exactly known
tions specify all detail microscopic structures of a polymeric
fluid. In principle, all these functions can be determined from ~ BFig= >, f dRpM(RM)[Inp"(RV)—-1]
a density functional theory. From the site—site correlation I=ACD

functions, we can calculate the average intermolecular corre- b mbvubra0)
lation function from +'8I:A2CD de( pN(RMVH(RD), (10
Mp Mp . . .
where the total bonding potential for a chairs
g(r)=W2 > gij(n) ) gp
Al=1j=1 M -1
: . . M(RMY = T
and the average intramolecular correlation functions from Ve (R™) Zl Up(ri i) (19
Ma Mp

1 2 2 5 Because of the bonding potentials on the right-hand side of
w(r)= M, &t = wij (1), 6) Eqg. (10), the Helmholtz energy functional for a polymeric
) ideal-gas mixture is different from that for a monatomic ideal
whereM 4 is the number of segments at each free moleculegas_ However, Eq(10) does not take into account the in-

A. Average molecular correlation functions are often suffi-yramolecular interactions other than the direct chain connec-
cient to specific the local structures of homopolymers. tivity.
To derive the excess Helmholtz energy functional due to
both intra- and intermolecular interactions beyond the chain
IIl. DENSITY FUNCTIONAL THEORY connectivity, we incorporate a modification of the

The system considered above is equivalent to a mixturé!ndamental-measure theorf-MT) developed recentf{

of three polymeric componenté(-C+ D) in a spherically With the polymerization theory of Chandler and Pratand

symmetric external field due to the fixed segment. The denWertheinf

sity functional theory for inhomogeneous polymeric fluids . chai
has been reported befot€Briefly, the grand potential func- BFex:f dr{®™n,(r) ]+ P n,(r) 1}, (12)
tional Q) is related to the Helmholtz energy functiofavia a

Legendre transform where ®"{n_(r)] and ®"¥Tn (r)] are, respectively, the

reduced excess Helmholtz energy densities due to hard-

Q=F[p™(RM),p@(R®),pP(RP))] sphere repulsion and chain connectivity. Different from the

direct bonding potential, the chain connectivity term arises

+ > J [PORDY— 1, 1pP(RMARD,  (7)  from the indirect interactions due to the exclude volume of
I=A.C,D

individual segments. In writing Eq12), we assume that the
wheredRM=dr{dr{---dr{}) represents a set of differential €xcess Helmholtz energy functional due to chain connectiv-
! ity can be effectively accounted using only segmental densi-
ties.
As in the original FMT, the scalar and vector weighted
ﬂensities are defined as

volumes for the polymer chaihof M, segmentsy, is the
polymer chemical potential, ardt)(R(") denotes the total
external potential on chaih The total external potential on
each molecule is equal to the sum ?Af the potential energy o
its individual segmenta? O(RO)=3" o0 (rMy. For any B B J Doty (@) N
segment that is not immediately bonded with the fixed seg- na(r)—Z na|(r)—2| p (T )W (r—r ",
ment, the external potential is identical to the segment— (13

segment interaction energy, while for the two segments thajhere the subscripts=0, 1, 2, 3,V1, V2 denote the index
are directly connected to the fixed segment, the external pgss gy weight functionsmf“)(r) that characterize the volume,

tential includes also the bonding energy. For tangentially tace area, and surface vector of a spherical particle. The

connected hard-sphere chains that are considered in thﬂétal segmental density of chainp(')(r), is given by a sum

work, the bonding potential;,,, is given by of that for individual segments,

ext — Buy(r r_)]_5(|ri—rj|—0) ®) M, M,
Posto ) I= =0 p(N=2 pil(N=2 | dRVa(r—r")p"(RD),
where segmentisandj are nearest neighbors from the same (14

molecule,3~ ! is the Boltzmann’s constaiki multiplied by
the thermal temperaturg and 5(r) is the Dirac delta func-

tion. ) All weight functions are independent of the density pro-
The Helmholtz energy function& can be formally ex-  fiies. Among them, three weight functions are directly related

pressed as an ideal-gas contributleg plus an excess term 1, ihe geometry of a spherical particle of diameter

Fex that accounts for intra- and intermolecular interactions 2

(other than the bonding potentials w(r)=o(ol2-r), (15

Wherepg'i)(r) stands for the local density of segmerftom
chainl.
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w(rn=0(c/2-1), (16) Minimization of the grand potential with respect to the
density profiles of free molecules and the polymeric frag-
w2 (r)=(rIr)8(al2—r), (17)  ments yields the following Euler—Lagrange equations,
where® (r) is the Heaviside step function, a@dr) denotes p(RM)=exd g~ BVy (RV)— ¥ O(RY)
the Dirac delta function. Integration of the two scalar func- —BAORM] (I=A,C,D), (22)

tions,w(?)(r) andw{®)(r), with respect to the position gives

the particle surface area and volume, respectively, and intevhere AO(R(D) = 6F,/5p"(RY) represents an effective
gration of the vector functiowl(vz)(r) is related to the gra- potential field due to intra- and intermolecular interactions.
dient across a sphere in thedirection. Other weight func- Because the excess Helmholtz energy functional depends
tions are proportional to the three geometric functions giverPnly on the density distributions of individual segments, the

in Egs.(15)—(17), effective potential can be simplified to
M
(2) (2) SF | OF
W (r) w = (r) O(RDy= ex  _ ex
0)/py— ! . Dy . AV(RY)= = . 23
w(N=——7 wn=———; (R™)= 5,0 RM 241 3001 (23)
WV () (18 Substituting Eq(23) into Eq. (22) yields
wVD(r)= ———. Mi
2ma p<'><R<'>>=exp[ =BV (R =B, M”(rf“)] ,
As in our previous work® the hard-sphere Helmholtz (249
energy density consists of contributions from scalar weighted () -
densities and vector weighted densities, where;’(r;”) is relateq tolthelexcess Helmholtz eneFyy,
and the external potentig("’(r(") by
®n, (1)} =0 n (N} Vin ()}, (199 SE
My = ex M pM)
where the superscripts) and (V) stand for contributions AT sp(rM) T (i), (24D
from scalar and vector weighted densities, respectively i . i ) )
given by Equation(24) indicates that as in a typical self-consistent-
field theory, the segment density is determined by the chain
. nin, n3 connectivity and an effective external potentigf’(r{").
O™ N, (r)}=—ngIn(1—ngz)+ T-n, * 36am2 Because Eq(23) involves only the total segmental density,
3 the self-consistent field is identical for all segments.
n3 Introducing the segmental densitigd(r) into Eq. (24)
XIn(1—ng)+ 36mna(1—ng)?2 ' (19D yields a set of coupled integral equations,
Ny1°N N,oNy»N Mry= h _ ¢ _ MHrM
hs(V) __vatlve T2lvarv2, g p -(r)—f dR™S(r —r; )exr{ﬁm BVy'(RY)
O, ()} 1-n, 127Tn§ IN(1—ng) st !
M
_ NaNyaNy, -B>, )\(')(r('))}. (25)
12mny(1—ng)? (199 Py M

In the limit of a bulk fluid, the two vector weighted densities SuPstitution of Eq(25) into Eq. (14) gives the average seg-
ny, and ny, vanish, and the Helmholtz energy functional Mental density of chain molecules

becomes identical to that from the Boublik—Mansoori— M,
Carnahan—Starling—Lelan@®MCSL) equation of staté®*° p(l)(l’)=eX[i,8,u|)f drRY s(r—rV)

The Helmholtz energy density due to chain formation at an =1
inhomogeneous condition is given By

M,
xex;{ —BVI(RM) —ﬁEl )\f')(r}'))}. (26)
=

CDchair*(na): —An é’ In th(O',na)
M, CASATIILL Equation(26) represents the key equation of this work.

+ 2 nadinyiien,), (20)
' IV. NUMERICAL METHOD
where §,=1—n\,2|-nv2|/n§, and yrl‘i(a,na) is the contact , o
value of the cavity correlation between segments and can be Because of the spherical symmetry, the density distribu-

expressed as tions of both free and tethered segments vary only in the
radial direction. As a result, the total density profile can be
1 Nyl nso¢ expressed as
hs _ 2 2
T N TE I N LA 7 TN R pM(ry=pM(r). 27)
whereZ=1-ny,"ny,/n3. Subsequently, Eq26) can be simplified &
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ps(r)=exp(Bupexd — AN (N]1G (N GR(r)

(I=A,C,D). (28

In Eq. (28), G™i(r) is the Green function fol=A (free
moleculg, which is determined from the recurrence relation,

G (1)~ [ ar’ ext - pAP(r )]

(A)i—1

r'e(c—|r'—r
Wil e 90

ot (r) (29
for i=2,..M, with G®(r)=1. Because the external po-
tential is the same for all the monomers on the chginve
have the additional symmetric relations

GEA)M —i+1l_ GE_A)i ) (30)
For |=C andD, the density profiles of the two immediate
neighbors of the fixed segment are given by

©_ ar-o)
2 .

D
py=p=

sl —

Ao (31)
The Green function for the next immediate neighbors is de
termined from

O(oc—|r—al)

GL2(r) =exd = BAy (0)] —; (32
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FIG. 2. The average intermolecular radial distribution functions of hard-
sphere 4-mers at packing fractions=0.1 (solid circles and 0.4(solid tri-
angles. The solid lines are calculated from this work, the dashed lines are
from an alternative density functional theory proposed by Yetleiral., and

the symbols are from molecular simulatigRef. 26.

are determined by the normalization conditighg r2p{®

X(r)dr=1, wherei=2,3,..M¢, andf 47r2p®(r)dr=1,
wherei=2,3,...Mp.

In calculating the inter- and intramolecular correlation
functions, we fix the segments of a polymer chain one by one
and the density distributions around the fixed segment are

calculated with Eqs(28)—(34). Because of symmetriyl /2

and those for the remaining segments are determined fromif M, is even or (M,+1)/2 (if M, is odd calculations are

the iteration

6= [ dr' exst - g

r'o(oc—|r—r’|)
X—

el

(33
for i=3,...M,. The functionGY'(r) is calculated from the
recurrence relation,

Géé)i(r):f dr’ exd — AN(r1)]

><r¢9(a—|r _r|)G(F!)‘+1
2071

(r’) (39

!

with GOMI(r)=1.
The chemical potentials for solving the density profiles

required for predicting the detail local structures of ho-
mopolymers consisting dl 5 identical segments. While the
amount of calculations would be substantial for long poly-
mers, we can simplify the procedure by calculating the cor-
relation functions only related to end and middle segments
because in a long polymer chain, the site—site correlation
functions of other segments are expected to be similar to
those for the middle segments. The density profiles are
solved using the Picard-type iterative method. The iteration
starts with bulk densities as initial guess, the effective fields
A(r), the Green function&{'(r) and G{"'(r) are then
calculated with the recurrence relations E@8)—(34). Sub-
sequently, a set of new density profiles are obtained from Eq.
(28), which are then mixed with the previous results as new
input. The iteration repeats until the percentage change is
smaller than 0.01 at all points. The numerical integrations are
performed using the trapezoidal rule with the step size

are obtained directly from Wertheim’s TPT1 equation of state= 0-02-.

for bulk hard-sphere-chain fluitfs

Bra=In pat MaBuilpy) +(1=Mu)| Iny§3*(0)

aIny;3°(o)
+ P (39

wherep,= M 5p, is the bulk densities of segmenﬁé}fis the

V. RESULTS AND DISCUSSION

We have calculated the inter- and intramolecular radial
distribution functions for freely jointed hard-sphere 4-mers,
8-mers, and 20-mers. Figure 2 compares the calculated inter-
molecular correlation functions with the Monte Carlo simu-
lation data for hard-sphere 4-mers at two packing fractions
7n=0.1 and 0.4. Here the overall packing fractigis defined

excess chemical potential of corresponding hard spheress 7= mpa°/6, wherep is the number density of segments.

given by the Carnahan—Starling equation of stAtequation
(35) is identical to Eq.(26) in the absence of the external
potential. The chemical potentials of the fragme@tand D
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3.0 (a) 3.0 (a)

25 (b) st (b)

— 17

dnrw(r)

1.0 15 2.0 25 3.0
r/oc

r/oc

FIG. 3. The average correlation functions of freely jointed hard-sphere FIG. 4. Same as in Fig. 3 but for 8-mers.

4-mers: (a) intermolecular correlation functions, an@h) nonbonded in-
tramolecular correlation functions. The symbols are the simulation values
(_Ref. 23 and curves are from the p_res_ent theory. The overall packing fractramolecular radial distribution functionsm 2W(I’). The
ﬂgg;fgﬁé’;&fg;if;{;i: ::g §gsggd[n§:sgé%6ﬁ§ézq“ares and dashed yiscontinuity atr =20 is due to the direct interaction be-
tween next nearest neighbors along the polymer chain. For
r<2g, the intramolecular correlation function increases
intermolecular correlation functions in good agreement withmonotonically with separation at low density. However, it
simulation results, one significant advantage of the preserghows a minimum at approximatety=1.50 as density in-
approach is free of two-molecular simulations for intermo-creases. For>2a, our theory reproduces the essential fea-
lecular structures. tures of nonmonotonic decaying of the intramolecular corre-
Figures 3—5 compare theoretical predictions with thelations. While the intramolecular correlation functions
Monte Carlo simulation data by Chang and Santéflend by  predicted from the present theory improves significantly in
Yethiraj®® for hard-sphere 4-mers, 8-mers, and 20-mers. Theomparison with alternative approaches in the literature, the
depletion of intermolecular segments at low density is due tagreement between theory and simulation is only semiquan-
the chain connectivity while the opposite trend at high denditative, especially at contact values. The discrepancy is
sity is due to the packing effect. Except the contact valuedjkely related to the approximation in representing the excess
our method gives accurate intermolecular correlation funcHelmholtz energy functional due to the chain connectivity
tions including the cusp at=2¢ related to the fixed bond (where only two-body correlation functions are usaifhen
length. In general, the theoretical predictions are in goodh segment is fixed at the origin, the intramolecular correla-
agreement with the simulation results at both high and lowtion functions are sensitive to multibody correlations among
densities. However, the theory overestimates the intermahe segments belonging to the same molecule.
lecular radial distribution functions and underestimates the Finally, Fig. 6 shows the intermolecular site—site radial
intramolecular radial distribution function near contact as thedistribution functions predicted from the present density
chain length increases. For the systems considered in thfsnctional theory and those from the Monte Carlo
work, the present theory provides slightly more accurate insimulatior* for freely jointed hard-sphere 4-mers. Our
termolecular correlation functions than Wertheim’s multiden-theory gives accurate end—end segment radial distribution
sity integral-equation theof?>*especially for long chains functions at the entire density region, however it overpredicts
at low densities. the end—middle and middle—middle segment radial distribu-
Figures 3b)—5(b) present the average nonbonded in-tion functions near contact. In Fig. 7, we compare the theo-
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FIG. 5. The average correlation functions of freely jointed hard-sphere 20-
mers:(a) intermolecular correlation functions, aifd) nonbonded intramo-
lecular correlation functions. The symbols are the simulation valRes.

33) and curves are from the present theory. The overall packing fractions are
7=0.1 (circles and solid lines 0.2 (squares and dashed lingand 0.35
(triangles and dotted—dashed lines

g,,(7)

retical predictions with Monte Carlo simulation dtéor the
intermolecular site—site radial distribution functions in hard-
sphere 8-mers. From Figs. 6 and 7, one can see that the
correlation hole between middle segments is more pro-
nounced than that between end segments or between an en 0.0 ' : '
segment and a middle segment. While our theory predicts 10 1.3 20 25 30
correctly the hole effect at low densities, it is not very accu- rlc
rate for the contact values of the correlations functions ing g _g. Intermolecular site—site distribution functions of freely jointed hard-
volving middle segment as the density increases. A possiblgphere 4-merda) gq4(r), (b) g1o(r), and(c) guy(r) for the overall packing
improvement of current theory is by introducing the multi- fractions »=0.1 (circles, 0.2 (square} and 0.34(triangles. The symbols
body correlation functions in the chain-connectivity excesd® the simulation value®ef. 39; the curves are from the present theory.
Helmholtz energy functional. Because of the close connec-
tion with the neighboring segments, the middle segments are
expected to be more sensitive to multibody correlations. ~ tions are calculated by approximate means, thermodynamic
properties from different approaches are often inconsistent.
V1. CONCLUSIONS _BesMes, _becaus_e calculation (_)f therquynamlc prope_rtles
involves integration of correlation functions at the entire
Correlation functions play a central role in conventionalrange of density, practical applications of the liquid-state
liquid-state theorie&> From the correlation functions, ther- theories for phase-equilibrium calculations are often severely
modynamic properties of a monatomic or polymeric fluid limited. Density functional theory, on the other hand, is
can be calculated from one of three approaches in statistichlased on approximations for the excess Helmholtz functional
mechanics: compressibility equation, virial equation, and thehat, for a uniform fluid, is essentially identical to an equa-
energy equation. One long-standing problem in statistication of state. While little guidelines are available to derive
theory of classical fluids is that because the correlation funcexcess Helmholtz functionals and indeed current applications
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structural properties. Therefore, density functional theory is a
20 (a) valuable supplementary of conventional liquid-state theories.
' In this work, we have extended Percus’ test-particle
* method to predict both intra- and intermolecular correlation
functions of bulk polymeric fluids using a density functional
theory developed earlier. Applications to freely jointed hard-
sphere chains indicate that this method predicts the site—site
distribution functions in good agreement with simulation re-
sults, especially for the end—end segment radial distribution
functions. In comparison with alternative approaches in the
literature, the method reported here has the advantages of
. : L s . self-consistency between structural and thermodynamic
1.0 1.5 2.0 25 3.0 35 4.0 properties and it is able to predict the nonideal behavior of
: intramolecular correlation functions.
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