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A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on
Rosenfeld’s perturbative method. The excess Helmholtz energy functional is derived from a modified
fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the
long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble
Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid
near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density
functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall.
Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low
temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present
density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim
and other density functional theories. The present theory is simple in form and computationally efficient. It
predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive
case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.

I. Introduction

The structure of fluids at interfaces is very important in many
applications such as absorption, wetting, capillary condensation,
etc. Many theoretical methods have been proposed for inhomo-
geneous hard-sphere fluid1-5 and Lennard-Jones fluid.6,7 How-
ever, in this work we consider the fluid with attractive or
repulsive Yukawa potential due to its wide applications to simple
fluids, charge-stabilized colloidal suspensions,8,9 micelles,10,11

microemulsions,12 dense plasmas,13 and C60 molecular systems.14

The hard-core Yukawa (HCY) potential is given by

whereσ is the diameter of particles,ε is the potential energy at
contact,λ is a screening length for the Yukawa tail, andr is
the center-to-center distance between two interacting particles.
Whenε > 0, eq 1 represents attractive HCY fluid, while it is
for repulsive HCY fluid whenε < 0.

Many studies have been carried out to investigate the phase
equilibria, thermodynamic properties, and surface tension of the
attractive hard-core Yukawa (HCY) fluid,12,15-17 while few
works were done for the repulsive HCY fluid. Recently, Cochran
and Chiew18 investigated the thermodynamic and structural
properties of repulsive hard-core Yukawa fluid using integral
equation theory, perturbation theory, and Monte Carlo simula-
tions. As for the inhomogeneous HCY fluid, Olivaves-Rivas et
al.19 used the singlet hypernetted chain (HNC) integral equation
and a modified version of the Lovett-Mou-Buff-Wertheim

(LMBW-1) to predict the density profile near a hard wall at
reduced densityFσ3 ) 0.7. The comparison with their own data
showed that the LMBW-1 equation works well at high tem-
peratures and overestimates density profiles at low temperatures.
Soon after, Yi and Kim20 proposed a density functional
perturbative approximation for attractive HCY fluid, which is
based on the weighted-density approximation (WDA) of Tara-
zona21,22and the density functional approximation of Rickayzen
et al.23,24Because the correct total pressure of the homogeneous
fluid is used in the determination of the value of the strength
parameter of their theory, it gives correct contact value, but
weaker oscillations when compared with the simulation data.
Another perturbation density functional theory25 also uses the
bulk pressure for uniform Yukawa fluid to determine its
parameter. So far, all the studies for inhomogeneous attractive
HCY fluid are limited to the reduced densityFσ3 ) 0.7, and no
investigation on confined repulsive HCY fluid was reported.

Density functional theory (DFT) is a powerful tool to study
the structure properties of inhomogeneous fluids. The key
problem of a DFT is that there is no exact form of the Helmholtz
free-energy functional. Besides Tarazana’s WDA,21,22 the
fundamental measure theory of Rosenfeld,2 especially the latest
modified version (MFMT),3,4 yields very accurate density
profiles for the fluids with solely repulsive forces near walls
and inside slit pores as well as the radial distribution functions
for homogeneous hard spheres and mixtures. The most simple
and popular method for dispersion force is the so-called mean-
field theory (MFT),1 which is computationally efficient but
describes some inhomogeneous phenomena only qualitatively.
The usual way to correct the results from MFT is the bulk fluid
direct correlation function obtained from the integral equation
theory. In this work, we reformulate the Helmholtz free-energy
function for the inhomogeneous attractive and repulsive HCY

* To whom correspondence should be addressed. E-mail: yangxyu@
mail.tsinghua.edu.cn.

u(r) ) {∞ , r < σ

-
ε exp[-λ(r/σ - 1)]

r/σ
, r g σ (1)

3512 J. Phys. Chem. B2005,109,3512-3518

10.1021/jp045112h CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/05/2005



fluid through Rosenfeld’s perturbative method.26 The excess
Helmholtz free-energy function due to hard-sphere repulsion is
evaluated from the MFMT, and dispersion contribution is
obtained using a quadratic expansion of the Helmholtz free-
energy function with respect to that for a uniform fluid of the
same chemical potentials. Then the theory is applied to
investigating the density profiles of attractive and repulsive HCY
fluid near a wall and the radial distribution functions of
homogeneous HCY fluid. To test the prediction of the present
DFT, the grand canonical ensemble Monte Carlo (GCMC)
simulations have been carried out to obtain the density profiles
of attractive and repulsive HCY fluid near a wall at different
reduced temperatures and densities.

In what follows, we present the DFT theory for HCY fluid
in Section II, the Monte Carlo method in Section III, the
numerical results for the density profiles and the radial distribu-
tion functions in Section IV, and a few general conclusions in
Section V.

II. Density Functional Theory

The grand potential for an inhomogeneous Yukawa fluid is
related to the Helmholtz energy functional through the Legendre
transform

where F(r ) is density profile for a Yukawa fluid,µ is the
chemical potential,Ω is the grand potential,Vext(r) is the external
potential, andF is the intrinsic Helmholtz energy functional.
Without loss of generality, we decomposeF into ideal and
excess parts

where the ideal intrinsic Helmholtz energy is known exactly,

In eq 4, kB is the Boltzmann constant,T is the absolute
temperature, andλ is the thermal de Broglie wavelength of the
HCY spheres.

The central topic of a density functional theory is to derive
an analytical expression for the excess Helmholtz free energy
as a functional of the density distributions. The excess Helmholtz
free energy can be further decomposed into the contributions
from the hard-sphere repulsion and long-ranged attraction.

As in the previous work, we apply the MFMT3,4 for the
functional Fhs

ex[F(r )] in eq 5. The mathematical expression of
the MFMT excess Helmholtz free-energy functional is given
by

whereΦhs[nR(r )] is the reduced excess Helmholtz free-energy
density due to hard-sphere repulsion,â ) 1/kBT, andnR(r ) is
the weighted density. The definition of the weighted densities
can be found in the previous work and papers of Rosonfeld.2

In MFMT, the hard-sphere Helmholtz free-energy density
consists of contributions from the scalar-weighted densities and
the vector-weighted densities,

where the superscripts (S) and (V) stand for the contributions
from scalar- and vector-weighted densities, respectively. The
scalar Helmholtz energy density is given by

and the vector part is expressed by3,4

In the limit of a bulk fluid, the two vector-weighted densities
nV1 andnV2vanish, and the Helmholtz free-energy densityΦhs

becomes identical to that from the Boublik-Mansoori-Carna-
han-Starling-Leland (BMCSL)27,28 equation of state.

To obtain the contribution of long-ranged attractive or
repulsive force to the excess Helmholtz energy functional,
Rosenfeld26 assumed that it could be perturbatively constructed
around that for the bulk fluid at equilibrium. Therefore, we can
make a functional Taylor expansion of the residual Helmholtz
free-energy functional around that for a uniform fluid to obtain

whereFb is the bulk density. The direct correlation functions
due to the residual attraction are defined as

If we neglect all higher-order term∆Catt
(n) (n > 2) in eq 10,

Fatt
ex[F(r )] becomes

At the equilibrium, the grand potentialΩ[F(r )] reaches its
minimum, i.e., δΩ[F(r )]/δF(r ′) ) 0. The following Euler-
Lagrange equation for the density profile can be achieved.

where Fhs
ex is evaluated from eq 6, andµhs

ex is the chemical
potential due to hard-sphere repulsion, which can be obtained
from the Carnahan-Starling equation. The perturbative method
is completely free of any weighted density and of any higher-

Ω[F(r )] ) F[F(r )] + ∫dr [Vext(r ) - µ]F(r ) (2)

F[F(r )] ) Fid[F(r )] + Fex[F(r )] (3)

Fid[F(r )] ) kBT∫dr [ln(F(r )λ3) - 1]F(r ) (4)

Fex[F(r )] ) Fhs
ex[F(r )] + Fatt
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order DCFs, as appeared in many other DFTs. The excess direct
correlation function∆Catt

(2)(|r ′ - r |) is defined as

where∆Chs
(2)(|r ′ - r |) is the second-order DCF of a HCY fluid,

which is given by the Percus-Yevick approximation of the
Ornstein-Zernike (OZ) equation.

The parametersahs andbhs for hard-sphere fluid are

∆CY
(2)(|r ′ - r |) is the second-order DCF of a HCY fluid, which

can be obtained, for example, from numerical solutions of HNC
or first-order mean spherical approximation (MSA)29 closure
of the OZ equation. The most popular approach is to calculate
∆CY

(2)(|r ′ - r |) from the MSA,30,31 due to its analytical
expressions in reasonable accuracy:

for r < 0 and

for r > 0. The parametersa, b, andV in eq 19 are three functions
of density F, reduced temperatureT* ) kT/ε, and screening
parameterλ, and can be obtained by solving three coupled
nonlinear equations.

The density profiles are solved from eq 14 using the Picard-
type iterative method. The iteration starts with the corresponding
bulk density as an initial guess. The next input is obtained by
mixing the new density profile with the previous one. The
numerical integrations are performed using the trapezoidal rule
with the step size∆z or ∆r ) 0.005σ. The iteration repeats
until the percentage change is smaller than 0.001 at all points.

III. Monte Carlo Simulations

Besides the simulation data from the literature, grand canoni-
cal ensemble Monte Carlo (GCMC) simulations are carried out
in this work to test the performance of the DFT for attractive
and repulsive HCY fluid at different temperatures and bulk
densities. Before the GCMC, Widom test particle method in an
NVTensemble is used to determine the excess chemical potential
as a function of the bulk density and temperature. The
conventional Metropolis algorithm is used for generating
successive configurations with the probability of successful
displacement adjusted to 50%. At each density and temperature,
the simulation box contains 1001 particles. In each MC cycle,
all particles are displaced once, and then a test Yukawa molecule
is inserted into the system five times to obtain excess chemical

potential because this may enable phase space to be covered
more efficiently if an appropriate value for the maximum
displacement is chosen.32

The grand canonical Monte Carlo (GCMC) simulation is then
carried out with the excess chemical potential obtained above.
The simulation systems were constituted by two parallel walls
separated by 10σ. The simulation box is cubic (10σ × 10σ ×
10σ). The usual periodic boundary conditions and minimum
imagine conventions were applied in the directions parallel to
the walls. The cutoff distance of the Yukawa potential is set to
5σ. Beyond this distance, the Yukawa potential is smaller than
-1.4932 × 10-4/T*. At each density and temperature the
simulation is run for 2.4× 107 complete cycles for sampling
the density distributions after about 1× 106 cycles for
equilibration. The density profile is recorded by dividing the
region between the walls into a number of equal-sized bins. It
is obtained by averaging the number of spheres in the bin over
the length of the run.

IV. Results and Discussions

A. Attractive HCY Fluid near a Wall. We first discuss the
density profiles of an attractive HCY fluid near a wall at
different temperatures and densities. The external potential can
be expressed as an exponential tail,

whereεW is the energy parameter of the wall. Throughout this
work, the hard-sphere Yukawa potential with the range param-
eter λ ) 1.8 is used. To test the performance of our GCMC
simulations and the DFT equations, we compare in Figure 1
the density profiles from different methods for the attractive
HCY fluid near a hard wall at reduced densityF* ) 0.7 and
reduced temperatureT* ) kT/ε ) 2.0. As expected, our GCMC
results are in excellent agreement with that of Olivares-Rivas
et al.,19 demonstrating that our GCMC program is correct and
reliable. Also included in Figure 1 are results from the DFT of
Yi and Kim,20 from the LMBW-1 integral equation,19 and from
the present DFT. The DFT of Yi and Kim20 gives correct contact
value, while it underestimates the strength of the oscillation of
the density profile. The density profile from the present DFT is
better than those from the LMBW-1 integral equation and the
DFT of Yi and Kim.20 In addition, the present DFT has the

Figure 1. Comparison of density profiles from different methods for
an attractive Yukawa fluid near a hard wall at reduced densityF* )
0.7 and reduced temperatureT* ) 2.0. The open circles and triangles
represent the Monte Carlo simulation results from Olivares-Rivas et
al.19 and the present work, respectively. The dotted, dashed, and solid
lines refer to the results from the DFT of Yi and Kim,20 LMBE-1
equation,19 and present DFT, respectively.
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advantage of numerical simplicity because no parameter has to
be chosen to satisfy the correct total pressure of the homoge-
neous fluid.

In Figures 2-4, the density profiles predicted from the present
DFT are compared with those from the GCMC simulations
carried out in this work for the attractive HCY fluid near a wall
at temperatureT* ) 2.0 and reduced densitiesFσ3 ) 0.4, 0.5,
and 0.7, respectively, and for each density, three wall energy
parametersεW/ε ) 0, 2.5, and 5.0 are considered. At this

temperature, the present DFT provides density profiles that are
in excellent agreement with the GCMC simulation results. It
can be seen from Figures 2-4 that the higher the wall energy
parameterεW is, the larger the magnitude of density oscillation.
The density profiles shift toward the wall as density increases.
There is a significant accumulation of spheres near the wall at
high density and large value ofεW.

For reduced densityFσ3 ) 0.7 and reduced temperaturesT*
) 1.25 and 1.1, the HCY fluid is near the vapor-liquid
transition temperature. WhenεW ) 0, the density profiles have
fewer oscillations and approach monotonic, as shown in Figures
5 and 6. The depletion of attractive HCY fluids near a wall at
low temperature (T* ) 1.1) is the result of the competition
between excluded-volume and attractive interaction: the former
favors accumulation of spheres near the wall, while the latter
restricts the sphere close to the wall. At low temperature, the
attractive interaction prevails and the density profile shows
depletion. The comparisons with the GCMC simulation data
suggest that the density profiles predicted from the present DFT
are in good agreement with the corresponding simulation data.
In contrast, the LMBW-1 equation19 overestimates the density
at contact and gives incorrect oscillatory behaviors, as can be
seen in Figure 6. The MFT used here for Yukawa fluid is
implemented by using the MFMT3,4 for the repulsive functional.
Figure 6 shows that the MFT is not only quantitatively unreliable
but also qualitatively questionable due to its failure to describe

Figure 2. Reduced density profiles for an attractive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.4 and reduced temperatureT* )
2.0. The symbols and solid curves represent the results from the GCMC
simulation and present DFT, respectively. To enhance visual clarity,
the profiles ofεW/ε ) 2.5 and 5.0 are shifted upward by 0.3 and 0.6,
respectively.

Figure 3. Same as in Figure 2 but for reduced densityFbσ3 ) 0.5.

Figure 4. Reduced density profiles for an attractive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.7 and reduced temperatureT* )
2.0. The symbols and solid curves represent the results from the GCMC
simulation and the present DFT, respectively. To enhance visual clarity,
the profiles ofεW/ε ) 2.5 and 5.0 are shifted upward by 0.5 and 1.0,
respectively.

Figure 5. Same as in Figure 4 except that the dotted lines refer to the
results from the LMBW-1 equation19 and the reduced temperature is
T* ) 1.25.

Figure 6. Reduced density profiles for an attractive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.7 and reduced temperatureT* )
1.1. The symbols, dashed, dotted, and solid lines represent the results
from the GCMC simulation, MFT, LMBW-1 equation,19 and present
DFT, respectively. To enhance visual clarity, the profiles ofεW/ε )
2.5 are shifted upward by 0.5.
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the depletion near the wall at low temperature. In addition, the
MFT gives too strong density oscillation. All these disadvantages
are caused by its neglect of the structured free-energy functional,
while the DCF is included to represent the structure in the
present DFT.

B. Repulsive HCY Fluid near a Wall. Figures 7-9 present
the density distributions of repulsive HCY fluids near a wall
with a repulsive, attractive, or no forces at different densities
(Fσ3 ) 0.5 and 0.7) and temperatures (T* ) -1.25 and-2.0).
The present DFT predicts accurate peak positions and contact
density values. Figures 7-9 suggest that the present DFT gives
more accurate density profiles for repulsive HCY fluid than that
for the attractive case at all the conditions studied in this work.
A remarkable difference is observed between the attractive and
repulsive HCY fluids, indicating that the effect of confinement
is enhanced for the repulsive HCY fluid. As we know, the
density profiles of attractive HCY fluid oscillate with a
periodicity of a hard-sphere diameterσ. However, a longer
periodicity of density oscillation is observed for the repulsive
HCY fluids, as can be seen from Figures 7-9. Furthermore,
no depletion phenomena are found for the repulsive HCY fluid
near the wall with attractive or repulsive forces, because both
excluded-volume effect and repulsive interaction favor ac-
cumulation of spheres near the wall.

In general, the quadratic density expression becomes unreli-
able when the local density is significant from the bulk density.
However, in Figures 2-5 the present DFT only slightly
overestimates the contact value of density at the strongly
attractive surface (εW/ε ) 5). The possible reason for the good
results is that the errors from all the neglected higher-order terms
are canceled out by the approximation of the used direct
correlation function. Since the vapor-liquid interface is less
inhomogeneous than the systems studied here, the quadratic
density expansion should be more accurate, and we hope that
the present DFT may predict the vapor-liquid interfacial
properties equally well.

C. Radial Distribution Function of HCY Fluid. On the
basis of the idea of Percus’ test-particle method, the present
DFT can be used to calculate the radial distribution functions
of the bulk HCY fluid. If we fix a sphere, then the external
potential produced by the fixed sphere is given by

If the density profile of other spheres around the fixed particle
is calculated from the DFT, the radial distribution functiong(r)
can be obtained through

Equation 23 has been applied to attractive and repulsive HCY
fluids. Figure 10 depicts the predicted radial distribution
functions for the attractive HCY fluid at reduced temperature
T* ) 2.0 and reduced densitiesFσ3 ) 0.3 and 0.8, along with
the Monte Carlo data of Shukla.12 The agreement between the
present DFT and the computer simulation is excellent. The
contact values of the radial distribution functions from the
present DFT are very accurate for attractive HCY fluids. The
excellent agreement can also be achieved from Figure 11 at a
subcritical temperatureT* ) 1.0 and a reduced densityFσ3 )
0.8. When Figures 10 and 11 are compared with the Figures 4
and 5 in ref 25, we found that the present DFT gives a more
accurate radial distribution function than Zhou’s perturbation
DFT25 does. Furthermore, our DFT is simpler in calculation
than that of Zhou because we avoid the determination of the
parameter from the bulk pressure.

Figure 7. Reduced density profiles for a repulsive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.5 and reduced temperatureT* )
-2.0. The symbols and solid curves represent the results from the
GCMC simulation and the present DFT, respectively. To enhance visual
clarity, the profiles ofεW/ε ) 0 and 2.5 are shifted upward by 1.0 and
2.0, respectively.

Figure 8. Reduced density profiles for a repulsive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.5 and reduced temperatureT* )
-1.25. The symbols and solid curves represent the results from the
GCMC simulation and the present DFT, respectively. To enhance visual
clarity, the profiles ofεW/ε ) 0 and 2.5 are shifted upward by 1.0 and
2.0, respectively.

Figure 9. Reduced density profiles for a repulsive Yukawa fluid near
a wall at reduced densityFbσ3 ) 0.7 and reduced temperatureT* )
-2.0. The symbols and solid curves represent the results from the
GCMC simulation and the present DFT, respectively. To enhance visual
clarity, the profiles ofεW/ε ) 0 and 2.5 are shifted upward by 3.0 and
6.0, respectively.

Vext(r) ) {∞ r < σ

-
εσ exp[-λ(r/σ - 1)]

r
r g σ (22)

g(r) ) F(r)/Fb (23)
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To check the applicability of the present DFT to the structure
of bulk repulsive HCY fluid, we compare in Figure 12 the
predicted radial distribution function with the Monte Carlo
simulation data of Cochran and Chiew18 at reduced temperature
T* ) -1.0 and reduced densitiesFσ3 ) 0.5 and 0.8. While the
agreement between the present DFT and the simulation is
excellent at low density (Fσ3 ) 0.5), the accuracy of the theory
becomes poor especially in the vicinity of contact. The present
DFT substantially underestimates the contact value of the radial
distribution function for the repulsive HCY fluid at high density.

The poor performance of the present DFT at high density is
probably due to the inaccuracy of the MSA solution for the
direct correlation function of the repulsive HCY fluid at high
density. A possible improvement of the present DFT is to use
the more accurate DCF obtained from the self-consistent integral
equation.33,34

V. Conclusions

We have applied the grand canonical ensemble Monte Carlo
simulation and a proposed density functional theory (DFT) to
investigate the structures of attractive and repulsive hard-core
Yukawa fluids near a wall as well as the radial distribution
function of the bulk hard-core Yukawa fluids. The perturbative
method proposed by Rosenfeld26 is used to treat the attractive
functional by making use of the direct correlation function of
the corresponding bulk fluid. The hard-sphere contribution to
the free-energy functional of hard-core Yukawa fluid is evalu-
ated from the modified fundamental measure theory of Yu and
Wu,3,4 and the attractive contribution is approximated by a
quadratic expansion with respect to the corresponding bulk fluid.
The direct correlation function used in the attractive functional
is the analytical solution of the mean spherical approximation
for the hard-core Yukawa fluid. The method proposed here is
simple in form and easy to implement.

Extensive comparison with GCMC simulation results for the
density profiles of attractive and repulsive hard-core Yukawa
fluids near a wall indicates that the current theory is fairly
accurate. The present DFT is capable of describing the surface
depletion of attractive hard-core Yukawa fluids. It has a
significant improvement on those of the modified version of
the Lovett-Mou-Buff-Wertheim (LMBW-1)19 and the per-
turbative method of Yi and Kim.20 In contrast, the widely used
mean field theory gives too strong density oscillation and fails
to account for the depletion. Therefore, the DFT proposed in
this work is comprehensively reliable and computationally
efficient. Furthermore, from both the simulation and present
DFT we know that the repulsive hard-core Yukawa fluid, which
presents a purely repulsive interaction between like-charged
colloidal particles, has no depletion near a wall.

When the present DFT is applied to the calculation of the
radial distribution function, good results are obtained for the
attractive hard-core Yukawa fluids. For the repulsive case, the
present DFT predicts very accurate radial distribution functions
at low density, but overestimates the radial distribution functions
in the vicinity of contact at high density. This shortcoming can
be overcome by using a more accurate direct correlation function
in the attractive Helmholtz functional. It is concluded that the
method used in this work is promising for practical applications
such as colloidal suspensions in confined geometry, inhomo-
geneous dense plasmas, etc.
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