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A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on
Rosenfeld’s perturbative method. The excess Helmholtz energy functional is derived from a modified
fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the
long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble
Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid
near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density
functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall.
Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low
temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present
density functional theory is better than those of the modified version of the L-eMetti—Buff—Wertheim

and other density functional theories. The present theory is simple in form and computationally efficient. It
predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive
case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.

I. Introduction (LMBW-1) to predict the density profile near a hard wall at
reduced densitgo® = 0.7. The comparison with their own data
showed that the LMBW-1 equation works well at high tem-
peratures and overestimates density profiles at low temperatures.
Soon after, Yi and Kirf? proposed a density functional
perturbative approximation for attractive HCY fluid, which is
based on the weighted-density approximation (WDA) of Tara-
zon&!22and the density functional approximation of Rickayzen
et al2324Because the correct total pressure of the homogeneous
fluid is used in the determination of the value of the strength
parameter of their theory, it gives correct contact value, but
weaker oscillations when compared with the simulation data.

The structure of fluids at interfaces is very important in many
applications such as absorption, wetting, capillary condensation,
etc. Many theoretical methods have been proposed for inhomo-
geneous hard-sphere fldid and Lennard-Jones flufl. How-
ever, in this work we consider the fluid with attractive or
repulsive Yukawa potential due to its wide applications to simple
fluids, charge-stabilized colloidal suspensi8fisnicelles!? 1!
microemulsiong? dense plasmas,and Go molecular system?'

The hard-core Yukawa (HCY) potential is given by

&Y r<o . . .
_ - _ ' Another perturbation density functional the&ralso uses the
ur =y _¢ exp-Alrlo — 1)] ,r=o @ bulk pressure for uniform Yukawa fluid to determine its
rlo parameter. So far, all the studies for inhomogeneous attractive

HCY fluid are limited to the reduced densijty® = 0.7, and no
investigation on confined repulsive HCY fluid was reported.

Density functional theory (DFT) is a powerful tool to study
the structure properties of inhomogeneous fluids. The key

whereo is the diameter of particles,is the potential energy at
contact,A is a screening length for the Yukawa tail, andis
the center-to-center distance between two interacting particles.

Whene > 0, eq 1 represents attractive HCY fluid, while it is ! .
¢ d b problem of a DFT is that there is no exact form of the Helmholtz

for repulsive HCY fluid where < 0. ; . , 5
Many studies have been carried out to investigate the phasefree-energy functional. Besides Tarazana's WBA? the

equilibria, thermodynamic properties, and surface tension of the fundamental measure theorZ of Rosenfetrspecially the latest
attractive hard-core Yukawa (HCY) flui'>17 while few moo!n‘led version .(MFMT)?"' yields very accurate density
works were done for the repulsive HCY fluid. Recently, Cochran profiles for the fluids with solely repulsive forces near walls
and Chiev® investigated the thermodynamic and structural and inside slit pores as well as the radial distribution functions
properties of repulsive hard-core Yukawa fluid using integral [Of homogeneous hard spheres and mixtures. The most simple

equation theory, perturbation theory, and Monte Carlo simula- &1d popular metho;j for dispersion force is the so-called mean-
tions. As for the inhomogeneous HCY fluid, Olivaves-Rivas et field t_heory (MF_T)' which is computationally eff|C|ent_bu_t
al® used the singlet hypernetted chain (HNC) integral equation d€SCribes some inhomogeneous phenomena only qualitatively.
and a modified version of the LovetMou—Buff—Wertheim The usual way to correct the results from MFT is the bulk fluid
direct correlation function obtained from the integral equation
*To whom correspondence should be addressed. E-mail: yangxyu@ theory. In this work, we reformulate the Helmholtz free-energy
mail.tsinghua.edu.cn. function for the inhomogeneous attractive and repulsive HCY
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fluid through Rosenfeld’s perturbative meth&dThe excess
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where the superscript§)(and /) stand for the contributions

Helmholtz free-energy function due to hard-sphere repulsion is from scalar- and vector-weighted densities, respectively. The

evaluated from the MFMT, and dispersion contribution is

obtained using a quadratic expansion of the Helmholtz free-

energy function with respect to that for a uniform fluid of the

same chemical potentials. Then the theory is applied to
investigating the density profiles of attractive and repulsive HCY

fluid near a wall and the radial distribution functions of

homogeneous HCY fluid. To test the prediction of the present
DFT, the grand canonical ensemble Monte Carlo (GCMC)
simulations have been carried out to obtain the density profiles

of attractive and repulsive HCY fluid near a wall at different
reduced temperatures and densities.

In what follows, we present the DFT theory for HCY fluid
in Section II, the Monte Carlo method in Section Ill, the

numerical results for the density profiles and the radial distribu-
tion functions in Section 1V, and a few general conclusions in

Section V.

Il. Density Functional Theory

scalar Helmholtz energy density is given by

3
nn nIn(1 — ny)
®"O[n (r)] = —nn(l — ny) + ——— + =2
‘ ° )T, 362
3
N,
> ®
36rny(1 — ny)
and the vector part is expressecby
nyN n,Ny,Ny,IN(L — N
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— Y )
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In the limit of a bulk fluid, the two vector-weighted densities
nv1 andnyyvanish, and the Helmholtz free-energy dengitys

The grand potential for an inhomogeneous Yukawa fluid is becomes identical to that from the BoubtiMansoori-Carna-
related to the Helmholtz energy functional through the Legendre han—Starling-Leland (BMCSL}"-?® equation of state.

transform

Qp(N] = Fle(N)] + [dr[Ver) —ulo(r)  (2)

where p(r) is density profile for a Yukawa fluidyu is the
chemical potentialQ is the grand potentiaV/ex(r) is the external
potential, andF is the intrinsic Helmholtz energy functional.
Without loss of generality, we decompos$einto ideal and
excess parts

Flp(n)] = Flp(r)] + F{p(r)] (3)

where the ideal intrinsic Helmholtz energy is known exactly,

Felp(r)] = ksT fdrlin(o(r)2%) — 1]o(r) (4)

In eq 4, kg is the Boltzmann constanf[ is the absolute
temperature, andl is the thermal de Broglie wavelength of the
HCY spheres.

The central topic of a density functional theory is to derive

an analytical expression for the excess Helmholtz free energy
as a functional of the density distributions. The excess Helmholtz

To obtain the contribution of long-ranged attractive or
repulsive force to the excess Helmholtz energy functional,
Rosenfeld® assumed that it could be perturbatively constructed
around that for the bulk fluid at equilibrium. Therefore, we can
make a functional Taylor expansion of the residual Helmholtz
free-energy functional around that for a uniform fluid to obtain

ex
att

op(r)
2Fex

1 , 0 att _ n o
Effdr dr W[P(r) pellp(r') = pgl + ... (10)

where py, is the bulk density. The direct correlation functions
due to the residual attraction are defined as

Fale()] = Failoy) + [<=S[p(r) — ppldr +

OFeX
ACD = _p— (11)
att ﬂdp(r)
2ex
ACEIr —r))=—p = (12)

0p(r) op(r)

free energy can be further decomposed into the contributions ¢ ;e neglect all higher-order termc;"g (n > 2) in eq 10,

from the hard-sphere repulsion and long-ranged attraction.

FoTo(n)] = Fde(n)] + Faile(r)] (6)

As in the previous work, we apply the MFNAT for the
functional Fi{p(r)] in eq 5. The mathematical expression of

the MFMT excess Helmholtz free-energy functional is given

by

BFm= [@"n,(r)]dr (6)

where®"{n,(r)] is the reduced excess Helmholtz free-energy

density due to hard-sphere repulsigh= 1/ksT, andny(r) is

the weighted density. The definition of the weighted densities
can be found in the previous work and papers of Rosorifeld.
In MFMT, the hard-sphere Helmholtz free-energy density

Foulp(r)] becomes
BFale(N] = BFalpy] — [ACKp(r) — pyldr —
2 [ S draCr = o) = el p(r) — ol + -
(13)

At the equilibrium, the grand potentigR[p(r)] reaches its
minimum, i.e.,0Q[p(r)]/op(r') = 0. The following Euler
Lagrange equation for the density profile can be achieved.

—In + BVedr) — [drr ACE(Ir —

rle(r') — eyl (14)

PO _ of OFhs e
o ﬁ[ap(r) :

consists of contributions from the scalar-weighted densities andhere F2* is evaluated from eq 6, and® is the chemical

the vector-weighted densities,

O"n,(N] = ", (] + " V[ ()

potential due to hard-sphere repulsion, which can be obtained
from the CarnahanStarling equation. The perturbative method
is completely free of any weighted density and of any higher-
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order DCFs, as appeared in many other DFTs. The excess direct 35
. . @ . . o MC & GCMC in Ref. 19
correlation functioPACg(|r" — r|) is defined as 3ol » Prosont GOMC
21yt — A Dter e ey asl DFT in Ref. 20
ACE(Ir — )= ACP(r' —r]) = ACR(Ir' —r|) (15) 2sp LMBW-1
20k ; —— Present DFT

whereAC@(|r' — r|) is the second-order DCF of a HCY fluid, o
which is given by the Percusyevick approximation of the { L5k
Ornstein-Zernike (OZ) equation.

1.0}
® r-o 0.5} o
AC(r) = 7 3 (16)
- — b .(rlo) — r/ r < L L L L L L
a'hs hS( O) 2ahs( G) 7 O.%.O 0.5 1.0 15 20 25 3.0 35 40

zlo

The parameterays and bys for hard-sphere fluid are
P Bns hs P Figure 1. Comparison of density profiles from different methods for

1+ 20y an attractive Yukawa fluid near a hard wall at reduced dengity-
— ( ) (17) 0.7 and reduced temperature = 2.0. The open circles and triangles
S (1- ,7)4 represent the Monte Carlo simulation results from Olivares-Rivas et
al.’® and the present work, respectively. The dotted, dashed, and solid
1+ 77/2)2 lines refer to the results from the DFT of Yi and KihLMBE-1
hs = —6 — (18) equationt® and present DFT, respectively.
1-mn)

potential because this may enable phase space to be covered
AC$’(|r' —r]) is the second-order DCF of a HCY fluid, which  more efficiently if an appropriate value for the maximum
can be obtained, for example, from numerical solutions of HNC displacement is choséa.

or first-order mean spherical approximation (MSAglosure The grand canonical Monte Carlo (GCMC) simulation is then

of the OZ equation. The most popular approach is to calculate carried out with the excess chemical potential obtained above.
ACP(r" — r]) from the MSA303L due to its analytical ~ The simulation systems were constituted by two parallel walls
expressions in reasonable accuracy: separated by 18 The simulation box is cubic (10x 100 x

100). The usual periodic boundary conditions and minimum

ACO(r) = —a — b ar® VO oy imagine conventions were applied in the directions parallel to
Gn=-a o 203 E(l e the walls. The cutoff distance of the Yukawa potential is set to
coshgrio) — 1 50. Beyond this distance, the Yukawa potential is smaller than
7 = 19) —1.4932 x 10°4T*. At each density and temperature the
2/12e’1r/(oT*) simulation is run for 2.4x 10" complete cycles for sampling

the density distributions after about % 1C° cycles for
equilibration. The density profile is recorded by dividing the
2 p region between the walls into a number of equal-sized bins. It
CY(r) = 5, expl=A(r — 0)/0] (20) is obtained by averaging the number of spheres in the bin over
the length of the run.

forr <0 and

forr > 0. The parameteis b, andv in eq 19 are three functions ) )
of density p, reduced temperatur® = kT/e, and screening V. Results and Discussions

parameterd, and can be obtained by solving three coupled A Attractive HCY Fluid near a Wall. We first discuss the
nonlinear equations. density profiles of an attractive HCY fluid near a wall at

The density profiles are solved from eq 14 using the Picard- gifferent temperatures and densities. The external potential can
type iterative method. The iteration starts with the corresponding pe expressed as an exponential talil,

bulk density as an initial guess. The next input is obtained by

mixing the new density profile with the previous one. The o0 z<0l2
numerical integrations are performed using the trapezoidal rule Vex(d = { —ey €XP[-A(z — 0l2)lo] z> ol2 (21)
with the step sizeAz or Ar = 0.00%. The iteration repeats W

until the percentage change is smaller than 0.001 at all points.Whereew is the energy parameter of the wall. Throughout this

work, the hard-sphere Yukawa potential with the range param-
eterl = 1.8 is used. To test the performance of our GCMC
Besides the simulation data from the literature, grand canoni- simulations and the DFT equations, we compare in Figure 1
cal ensemble Monte Carlo (GCMC) simulations are carried out the density profiles from different methods for the attractive
in this work to test the performance of the DFT for attractive HCY fluid near a hard wall at reduced denspy = 0.7 and
and repulsive HCY fluid at different temperatures and bulk reduced temperatui® = kT/e = 2.0. As expected, our GCMC
densities. Before the GCMC, Widom test particle method in an results are in excellent agreement with that of Olivares-Rivas
NVTensemble is used to determine the excess chemical potentiakt al.1® demonstrating that our GCMC program is correct and
as a function of the bulk density and temperature. The reliable. Also included in Figure 1 are results from the DFT of
conventional Metropolis algorithm is used for generating Yiand Kim,2°from the LMBW-1 integral equatiof, and from
successive configurations with the probability of successful the present DFT. The DFT of Yi and Kiigives correct contact
displacement adjusted to 50%. At each density and temperatureyalue, while it underestimates the strength of the oscillation of
the simulation box contains 1001 particles. In each MC cycle, the density profile. The density profile from the present DFT is
all particles are displaced once, and then a test Yukawa moleculebetter than those from the LMBW-1 integral equation and the
is inserted into the system five times to obtain excess chemical DFT of Yi and Kim20 In addition, the present DFT has the

Ill. Monte Carlo Simulations
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Figure 2. Reduced density profiles for an attractive Yukawa fluid near
a wall at reduced density,o® = 0.4 and reduced temperatufé =

zlo

Figure 5. Same as in Figure 4 except that the dotted lines refer to the
results from the LMBW-1 equatidhand the reduced temperature is

2.0. The symbols and solid curves represent the results from the ceme T = 1.25.
simulation and present DFT, respectively. To enhance visual clarity,
the profiles ofew/e = 2.5 and 5.0 are shifted upward by 0.3 and 0.6, e /e=0
respectively. W
P Y 4} g /e=25
35F DFT
g /e=0 3 MEFT
o £ /=25 5 LMBW-1
25} £,/€=50 K}
= 20} DFT 2r
*
Q
15} s
1+
1ot
05F 0 : . . .
0 1 2 3 4
O /o
zlo Figure 6. Reduced density profiles for an attractive Yukawa fluid near
Figure 3. Same as in Figure 2 but for reduced dengify® = 0.5. a wall at reduced densitg,o® = 0.7 and reduced temperature =
1.1. The symbols, dashed, dotted, and solid lines represent the results
7 from the GCMC simulation, MFT, LMBW-1 equatidfi,and present
Je=0 DFT, respectively. To enhance visual clarity, the profilescgfe =
6 ES 2.5 are shifted upward by 0.5.
g /e=25
Sr e /e=50 temperature, the present I_DFT provides de_nsity profiles that are
a4l WDFT in excellent agreement with the GCMC simulation results. It
N can be seen from Figures-2 that the higher the wall energy
Rosl parametety is, the larger the magnitude of density oscillation.
The density profiles shift toward the wall as density increases.
2r There is a significant accumulation of spheres near the wall at
L high density and large value efy.
For reduced densityo® = 0.7 and reduced temperaturgs
0 L = 1.25 and 1.1, the HCY fluid is near the vapdiquid
0 4 3 transition temperature. Whex, = 0, the density profiles have
z/lo fewer oscillations and approach monotonic, as shown in Figures
Figure 4. Reduced density profiles for an attractive Yukawa fluid near 5 and 6. The depletion of attractive HCY fluids near a wall at
a wall at reduced densitp,o® = 0.7 and reduced temperature = low temperature T* = 1.1) is the result of the competition

2.0. The symbols and solid curves represent the results from the GCMCheqyeen excluded-volume and attractive interaction: the former
fﬁ?ﬂfg}ﬁgsagggxf gez"?gn;r%':;'(; (Zsrzescrt:i\;tilﬁl J:V\?:rza{;;%f’ésgﬁlf'lalgfy’ favors accumulation of spheres near the wall, while the latter
respectively. restricts th_e sphel_re close to the wall. At Iow_ temperature, the
attractive interaction prevails and the density profile shows
advantage of numerical simplicity because no parameter has todepletion. The comparisons with the GCMC simulation data
be chosen to satisfy the correct total pressure of the homoge-suggest that the density profiles predicted from the present DFT
neous fluid. are in good agreement with the corresponding simulation data.
In Figures 2-4, the density profiles predicted from the present In contrast, the LMBW-1 equatidhoverestimates the density
DFT are compared with those from the GCMC simulations at contact and gives incorrect oscillatory behaviors, as can be
carried out in this work for the attractive HCY fluid near awall seen in Figure 6. The MFT used here for Yukawa fluid is
at temperaturd* = 2.0 and reduced densities® = 0.4, 0.5, implemented by using the MFMT for the repulsive functional.
and 0.7, respectively, and for each density, three wall energy Figure 6 shows that the MFT is not only quantitatively unreliable
parametersswle = 0, 2.5, and 5.0 are considered. At this but also qualitatively questionable due to its failure to describe
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zlo Figure 9. Reduced density profiles for a repulsive Yukawa fluid near
Figure 7. Reduced density profiles for a repulsive Yukawa fluid near a wall at reduced density,o® = 0.7 and reduced temperatufé =
a wall at reduced density,o® = 0.5 and reduced temperatufé = —2.0. The symbols and solid curves represent the results from the

—2.0. The symbols and solid curves represent the results from the GCMC simulation and the present DFT, respectively. To enhance visual
GCMC simulation and the present DFT, respectively. To enhance visual clarity, the profiles ofew/e = 0 and 2.5 are shifted upward by 3.0 and
clarity, the profiles ofw/e = 0 and 2.5 are shifted upward by 1.0 and 6.0, respectively.

2.0, respectively.

In general, the quadratic density expression becomes unreli-

7+ s g le=25 able when the local density is significant from the bulk density.
ol i W/ - 0 However, in Figures 25 the present DFT only slightly
&€= overestimates the contact value of density at the strongly
5t o &g /e=-25 attractive surfacee(ye = 5). The possible reason for the good
— " results is that the errors from all the neglected higher-order terms
w4t — DFT LI )
P are canceled out by the approximation of the used direct
5l correlation function. Since the vapeliquid interface is less
inhomogeneous than the systems studied here, the quadratic
2r density expansion should be more accurate, and we hope that
1k the present DFT may predict the vapdiquid interfacial
properties equally well.
00 3 "‘ C. Radial Distribution Function of HCY Fluid. On the
basis of the idea of Percus’ test-particle method, the present
zlo DFT can be used to calculate the radial distribution functions
Figurl? 8t- Rgducgddden_stSBngOﬁ(')e; forda reé)U'Si;etYUkaWi‘ leléid near of the bulk HCY fluid. If we fix a sphere, then the external
a wall at reduced density,o® = 0.5 and reduced temperatufé = ; : P
—1.25. The symbols and solid curves represent thepresults from the potential produced by the fixed sphere is given by
GCMC simulation and the present DFT, respectively. To enhance visual
clarity, the profiles ofw/e = 0 and 2.5 are shifted upward by 1.0 and © r<o
2.0, respectively. Vol = €0 exp[=A(rlo — 1)] r>o (22)

the depletion near the wall at low temperature. In addition, the r

MFT gives too strong density oscillation. All these disadvantages

are caused by its neglect of the structured free-energy functiona,!f the density profile of other spheres around the fixed particle
while the DCF is included to represent the structure in the 'S calculated from the DFT, the radial distribution functig(n)
present DFT. can be obtained through

B. Repulsive HCY Fluid near a Walll. Figures 79 present

the density distributions of repulsive HCY fluids near a wall a(r) = p(r)/py (23)
with a repulsive, attractive, or no forces at different densities
(0o® = 0.5 and 0.7) and temperaturé® (= —1.25 and—2.0). Equation 23 has been applied to attractive and repulsive HCY

The present DFT predicts accurate peak positions and contacfluids. Figure 10 depicts the predicted radial distribution
density values. Figures—@ suggest that the present DFT gives functions for the attractive HCY fluid at reduced temperature
more accurate density profiles for repulsive HCY fluid than that T* = 2.0 and reduced densitigs® = 0.3 and 0.8, along with

for the attractive case at all the conditions studied in this work. the Monte Carlo data of Shukld.The agreement between the

A remarkable difference is observed between the attractive andpresent DFT and the computer simulation is excellent. The
repulsive HCY fluids, indicating that the effect of confinement contact values of the radial distribution functions from the
is enhanced for the repulsive HCY fluid. As we know, the present DFT are very accurate for attractive HCY fluids. The
density profiles of attractive HCY fluid oscillate with a excellent agreement can also be achieved from Figure 11 at a
periodicity of a hard-sphere diameter However, a longer subcritical temperatur@ = 1.0 and a reduced densipy® =
periodicity of density oscillation is observed for the repulsive 0.8. When Figures 10 and 11 are compared with the Figures 4
HCY fluids, as can be seen from Figures9. Furthermore, and 5 in ref 25, we found that the present DFT gives a more
no depletion phenomena are found for the repulsive HCY fluid accurate radial distribution function than Zhou'’s perturbation
near the wall with attractive or repulsive forces, because both DFT?® does. Furthermore, our DFT is simpler in calculation
excluded-volume effect and repulsive interaction favor ac- than that of Zhou because we avoid the determination of the
cumulation of spheres near the wall. parameter from the bulk pressure.
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45 The poor performance of the present DFT at high density is
a0l . . probably due to the inaccuracy of the MSA solution for the
° p*=0.8 T*=2.0 direct correlation function of the repulsive HCY fluid at high

35F s p*=03 T*=2.0 density. A possible improvement of the present DFT is to use
30l —— DFT the more accurate DCF obtained from the self-consistent integral

— equations334

D 25t

® 50l V. Conclusions

We have applied the grand canonical ensemble Monte Carlo

Lsr simulation and a proposed density functional theory (DFT) to
1.0} investigate the structures of attractive and repulsive hard-core
05 Yukawa fluids near a wall as well as the radial distribution

function of the bulk hard-core Yukawa fluids. The perturbative
rlo method proposed by Rosenfélds used to treat the attractive

Figure 10. Radial distribution functions of an attractive Yukawa fluid ~ functional by making use of the direct correlation function of
at reduced temperatufié = 2.0. The symbols and solid lines represent  the corresponding bulk fluid. The hard-sphere contribution to
the results from simulatid and the present DFT, respectively. the free-energy functional of hard-core Yukawa fluid is evalu-
5 ated from the modified fundamental measure theory of Yu and
Wu 24 and the attractive contribution is approximated by a
\ & p*=0.8 T*=1.0 quadratic expansion with respect to the corresponding bulk fluid.
4r —— DFT The direct correlation function used in the attractive functional
is the analytical solution of the mean spherical approximation
for the hard-core Yukawa fluid. The method proposed here is
simple in form and easy to implement.

Extensive comparison with GCMC simulation results for the
density profiles of attractive and repulsive hard-core Yukawa
fluids near a wall indicates that the current theory is fairly
accurate. The present DFT is capable of describing the surface
depletion of attractive hard-core Yukawa fluids. It has a
L L L significant improvement on those of the modified version of

1.0 L5 20 23 30 the Lovett-Mou—Buff—Wertheim (LMBW-1}° and the per-

1o turbative method of Yi and Kim? In contrast, the widely used
Figure 11. Radial distribution functions of an attractive Yukawa fluid mean field theory gives too strong density oscillation and fails
at reduced temperatuf@® = 1.0 and reduced densip* = 0.8. The to account for the depletion. Therefore, the DFT proposed in
symbols and solid line represent the results from simul&tiand the this work is comprehensively reliable and computationally
present DFT, respectively. efficient. Furthermore, from both the simulation and present

4.0 DFT we know that the repulsive hard-core Yukawa fluid, which
o presents a purely repulsive interaction between like-charged
B[r3 5 =03 T*=1.0 colloidal particles, has no depletion near a wall.
30| . . *=0'8 T 1'0 When the present DFT is applied to the calculation of the
P o radial distribution function, good results are obtained for the
el DFT attractive hard-core Yukawa fluids. For the repulsive case, the
© 20f present DFT predicts very accurate radial distribution functions
\% sk at low density, but overestimates the radial distribution functions
’ in the vicinity of contact at high density. This shortcoming can
1LOF be overcome by using a more accurate direct correlation function
sl in the attractive Helmholtz functional. It is concluded that the
’ method used in this work is promising for practical applications
0.%‘5 10 175 2?0 2?5 3f0 3f5 20 such as colloidal suspensions in confined geometry, inhomo-
. geneous dense plasmas, etc.
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