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Equation of state for hard-sphere chain molecules
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Abstract

An equation of state for homonuclear chain molecules 1s formulated on the basis of thermodynamic perturbation
theory of Wertheim. It yields a very accurate prediction of the compressibility factor of different chain molecules
including hard spheres and hard dumbbells as well as flexible chains with up to 200 bonds 1n a molecule In addition.
a large number of molecular simulation results are used to test the thermodynamuic first-order perturbation theory
(TPT1), the thermodynamic second-order perturbation theory (TPT2), the scaled particle theory (SPT), the
Percus— Yevick and Carnahan—Starling (PY -CS) equation, the generalized Flory—Dimer equation (GF-D) and our
equation For short chamn molecules {(m <4), good agreement between the calculated and computer simulation data
can be obtamed from all of the above equations, but for long chain molecules the equation proposed 1n this work 1s
better than the other equations,

Keywords Theory, Equation of state, Hard-sphere chain molecule; Molecular simulation

1. Introduction

Real molecules are usually polyatomic except for the noble gases and metals, so it is important
to develop equations of state for chain molecules. Simple models of chain molecules which take
into account the repulsive forces between molecules are invariably based on repulsive hard-core
potentials. A commonly used model is that of the athermal hard-sphere chain or freely jointed
tangent spheres. This simple model can be used as a repulsive potential reference system. Once
the thermodynamic properties of the hard-sphere chain molecules are known, the properties of
realistic polymers can be obtained by using perturbation theory to consider the effects of the
attractive forces in the usual way.

Wertheim (1987) introduced two equations of state for the hard-sphere chain fluid based on
his thermodynamic perturbation theory (TPT) (Wertheim, 1984a, b, 19864, b) of polymerization.

* Corresponding author

0378-3812/94/307 00 © 1994 — Elsevier Science B V All rights reserved
SSDI 0378-3812(94)02546-D



160 YX Yu et al. | Flud Phase Equilibria 102 (1994) 159-172

On the basis of the results of Wertheim and of Jackson et al. (1988), Boublik et al. (1990)
formulated an equation of state for fluids of fused hard-sphere bodies. It is an extension
of the general form of the equation of state that follows from the scaled particle theory
(SPT). The generalized Flory—Dimer theory (GF-D) (Honell and Hall, 1989) is derived as
a generalization of the well-known Flory (1942) lattice theory to continuous space. Chiew
(1990) derived analytical expressions for an equation of state for the hard-sphere chain fluid based
on the ‘“‘particle—particle” Ornstein—Zernike integral equation in the Percus—Yevick (PY)
approximation.

In this paper an equation of state is proposed on the basis of the thermodynamic perturbation
theory of Wertheim (1984a, b, 1986a, b). This equation can be applied to systems of linear
molecules and flexible chains. A comparison of several equations of state (TPT1, TPT2, SPT,
PY-CS, GF-D and the present equation) is made by using a large number of computer
simulation data published in the literature.

2. Theory

The equation of state for the hard-sphere chain fluid can be obtained using a simple
perturbation theory of Wertheim for molecules with multiple bonding sites (Wertheim, 1984a, b,
1986a, b). When a chain molecule with sphere number m 1s formed, a mixture of hard-spheres
with different diameters and a chain molecule with sphere number m — 1 can be taken as a
reference system.

Fig. 1 shows the formation of a hard-sphere molecule in which the number of spheres is m.
The bond length is equal to the sum of the radii of two neighboring spheres, i.e. [, = (o, + 7,)/2.
In Fig. 1, only A4,B,., bonding is allowed. In this system, the compressibility factor of hard
spheres and the chain contribution:
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Fig 1 Formation of a chain molecule with m — 1 bonds
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where the number density of total spheres, p, is equal to mp, P is the pressure of the system, 7'
1s the temperature, p is the number density of chain molecules and & is the Boltzmann constant.
The term Z™*™ is given by

m—1
ZMn=ZW 28N+ + 2, = T2 (2)

=1

For the compressibility factor of hard spheres, we can employ the expression of Boublik
(1970):

PV 6 So 361&, 63(3—53)J
Zhs — — [ _+_ _|._ (3)
NKT mp |1 —&  (1=&)* (1-¢&)°
The reduced densities ¢ are defined as
n
¢, =EZ ps.0r  (n=0,1,2,3)
When ¢, =0,= - =o0,, Eq. (3) reduces to the Carnahan and Starling equation for pure hard
spheres:
1 2,3

(1—n)°

where 7 = (n/6) £, p,,07.
The bonding terms in Eq. (2) is obtained from Jackson et al. (1988):

oX 1 1 0X, 1 1
S e
=P Ops lrn [ Xa, 2 Prat op, lrn[Xs,,, 2

where X, is the fraction of spheres i unbonded at site A. According to the perturbation theory
of Wertheim, X, and Xy _, can be expressed as

1
Xa, = 6)
. 1+ps,z+1XB,+,AA,B,+1 (
X, = ’ (7
B .1 T 1 =+ pSJXA, AA,B,+1

For short-range potentials, the function A, ., is well approximated by Jackson et al.
(1988):

AA,B, - 47Tgt.1+ 1 (Ut,t+ 1 )Giz+ 1 JUA,B, +1 (l~ i+ 1)>w,.m, +1 dr1.1+ 1 (8)

The factor g, ,(c,,.,) is the i —z + 1 contact value of the radial distribution function for the
hard-sphere reference mixture with (0,,,,) =(0, +0,,1)/2. The term {fap, (i, i+ 1)), . .,
= <exp(—¢',i‘j’§f‘+]/kT) — 1), ., Tepresents an angle average of the Mayer function for the
A,B, ., site—site intermolecular potential over all orientations of spheres i and i + 1. The
integration is over the intermolecular separation r,,, ,.
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Since only A,B,, ; bonding is allowed, the number of spheres i bonded at A, must equal the
number of spheres i + 1 bonded at B, :
pull — XA,):ps,l+1(1_XB,+1) (9
ie.

—1-L1-x,) (10)
pbl+1

Bl+l

Furthermore, if a pure fluid is formed in the limit of complete bonding we obtain
Pt =P 2= =Psm- So

XAI :XB1+1 :0

After substituting these expressions into Egs. (6) and (7) and rearranging, we have

‘limo(p\,+1 Anp Xa +Xa -1 =0 (11)
P A,"

lim (p,, Aap,, X5, ., + X, —1)=0 (12)
Xp, .0

Since p,=Z" | p,, = mp,, =mp,,,, Egs. (11) and (12) become

A
<ps A,B,+1>X2Al_1=0 (13)
m
A
<ps A1B1+1>X:él+l_1=0 (14)
m
le.
X=X, =0 (15)
o, AA,BI+1

Substituting Eq. (15) into Eq. (5), we obtain

1 )
Z})?Edl — ___|:1 + pb <8AAIB,+1> J (16)
m AA,B, ‘1 ops T.N

The bonding contributions can now be expressed in terms of the contact values of the
hard-sphere radial distribution functions:

1 P 08.:+1(0,,41)
Z?’ond = —— {1 + s |: 1+ L+ (17)
v m gm+1(al.z+1) aps T.N

When i = 1, the reference system is a hard-sphere mixture system. The contact value of the
radial distribution function 1s

giaox) = g}f;(o'lz) = ghs(o')
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Substituting the above equation into Eq. (17), we can obtain

hs
Zbond — _l[Hps[a Ing (o)] } (18)
m op T.N

Also let Z,, =mZ%"d,
When 2 <i <m — 1, the reference system is a mixture of hard spheres and a hard-sphere
chain molecule, so

g11+1(01.1+1) =gkf+](0',,+1) _Agl,l+1(o-l.l+1)
= g"(0) — Ag(o)

where Ag(o) is the difference between radial distribution functions in the hard-sphere mixture
and hard-sphere chain mixture.

1 0 In[g"(0) — Ag(0)]
Zbond —
o m{l‘i‘,ﬂs[ Ops T.N (19)
Since
0ln[g"(c) — Ag(0)] 01ng™(s)  dIn[l — Ag(s)/g"(o)]
= +
0ps ops op,
we have
zo —zhpe 22 o
m

vens _ 212 _p, 01n[1 — Ag(0) ™ (0)]
nw+1 -
m Ops

2<i<m-—-1) (20)

By combining the hard-sphere reference term with Eq. (20), the final expression for the
molecular compressibility factor is given by

0 In[1 — Ag(0)/g™(o)]
0ps

When m =2, the chain molecule becomes the dumbbell molecule and the compressibility
factor ZPB of the dumbbell system can be obtained from Eq. (21):

ZDB:ZZhS+le (22)

P
Zhse :pk—T=mZh5+(m —DZ,,— (m —2)p,

(21)

ZP® can be expressed by the Tildesley—Streett equation (Tildesley and Streett, 1980):
_ 1+2.45696n + 4.103861° — 3.755037°

ZbB e (23)
We can obtain Z,, from Egs. (22), (23) and (4):
_ _ 2 3
1 -0.45696n — 2.103861* + 1.755037 (24)

2 (1—n)°



164 Y X Yu et al.| Fhud Phase Equilibria 102 (1994) 159-172

The third term of Eq. (21) is small and it can be regressed from the computer simulation data
of chain molecules (Dickman and Hall, 1988; and Gao and Weiner, 1989).

dIn[1 — Ag(s)/g™(a)]  0.75497n(1 — 4.6260n + 6.320512)
Ps dp. - Tk

From Egs. (24), (25) and (21), the equation of state for a hard-sphere chain system is
obtained:

(25)

P o l+n+n>—n? (m—1) 1 —0.45696n — 2.10386xn> + 1.755034°
pkT (1—n)? (1—n)°
0.754975(1 — 4.6260n + 6.320542)

(1—n)°

When the above equation is applied to a mixture of hard-sphere chain molecules, m is equal
to X, x,m,, where x, is the mole fraction of the molecules with sphere number equal to m,.

Other equations used for hard-sphere chain molecules are listed as follows.

(1) Thermodynamic first-order perturbation theory (TPT1) (Wertheim, 1987):

P L+n+n>—n [ n 3n j|

=m —(m-1|1- + 27

pkT (1—n)° ) (2—n) (1—n) (27
(2) Thermodynamic second-order perturbation (TPT2) (Wertheim, [987):

P 1 2 .3
L "~On—D[L— n_ . _3n ]

—(m —2)

(26)

pkT (1—n)? (2—m (1—n)
o of1e i) 2

where

m_rzm_m(l+4/l——4/l/m2)”2_ 2 N (29)
2 2(1+44) (1+44)

2 =0.233633x5(1 + 284n) (30)

(3) Scaled particle theory (SPT) (Boublik et al., 1990):
P 1 3a (49« — 31) — n(11o — 7) — n3(250 — 21)]
KT T—q  (—n? 61—’ (D

where o« = (m + 1)/2. In the case of a mixture of chain molecules, « is given by the relationship

a=> xm)2+1/2

(4) Percus—Yevick and Carnahan-Starling (PY-CS) theory (Chiew, 1990):

P l+n+n’—-n’ 1+1n/2

P 7 T R e

(32)
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(5) Generalized Flory—Dimer theory (GF-D) (Honell et al., 1989):

P [Vum) — V(D)1 + 245696y +4.10386n> — 3.755034°
okT | V.(2) — V(1) (1—n)°

Ve V(@) |14+ + n? —n3:l
|:Ve(2) - Ve(l):": (1 — n)3 (33)

where V.(1) =4n63/3, V.(2) =9nc/4, V.(3) =9.826056°, V. (n) is estimated from
V() = Ve(3) +(n = 3)[Ve(3) — Ve(2)]

3. Results and discussion

Eq. (26) was used to calculate the compressibility factor of hard-sphere chain molecules with
different chain lengths and the calculated results are compared with molecular simulation data.

Table 1
Comparison of equations of state from various theories and MC simulation for m =2

n PlpkT
MC* TPT1 TPT2 SPT PY-CS GF-D This work
0 101 175 177 176 177 176 1.77 177
0200 318 317 314 3.18 3.09 317 317
0.312 6.41 629 624 6 31 603 6.30 6.30
0.398 11.16 10 96 10.88 10.97 10.38 10.96 10 96
0450 15.60 1561 15.52 1559 1472 1559 1559
ARD%® 102 148 093 4.33 097 097
+The MC simulation data are from Archer and Jackson (1991)
100 ¥ 100 ¥ . MD (15 MD
b ARDYs = — Y |z — ZMC|/ZMC or ARD% =— Y|zt —2z) ||ZMP.
M =1 M =1
Table 2
Comparison of equations of state from various theories and MC simulation for m =3
" PlpkT
MC* TPT! TPT2 SPT PY-CS GF-D This work
0050 1.42 1.42 140 1.42 141 141 138
0100 200 2.00 197 2.00 197 199 194
0 300 771 770 7.57 772 723 7 64 7 60
0 401 15.23 15.39 1519 1540 14 21 1522 15.17
0453 21 68 22.31 22 08 2225 20 49 2201 21.86

ARD% 076 149 074 405 071 180

3 The MC simulation data are from Amos and Jackson (1991)




166

Y X. Yu et al | Flud Phase Equiibria 102 (1994) 159-172

The Monte Carlo (MC) data were from Archer and Jackson (1991), Amos and Jackson (1991)
and Dickman and Hall (1988). For longer chain systems, more accurate compressibility factor
data can be obtined from molecular dynamics (MD) simulation. The MD data were from the

Table 3

Comparison of equations of state from various theories and MC simulation for m =4

n PlpkT

MC ¢ TPT1 TPT2 SPT PY-CS GF-D This work
0107 225 2.37 230 237 2.32 234 223
0 205 473 4.88 474 4.88 463 4.82 469
0252 6 40 682 6 64 6.83 6 38 6.73 662
0262 7.46 732 713 7.33 683 7.22 712
0278 8.02 819 799 821 762 8.08 799
0 289 870 8.85 8 64 8 87 8 21 873 8 64
0.310 9 80 10 27 1003 10 29 948 1012 10 04
0323 10.91 1125 11 00 1128 10 36 1108 1101
0 340 12.20 12 68 12 42 1271 11 65 1249 1243
0 349 12.70 1352 1324 1355 12 39 1331 13.25
0.359 1350 14 51 14.23 14 54 1328 14.28 14.22
0376 16 10 16 38 16.08 16 40 14 95 16 11 16 04
0.394 17 80 18.63 18.32 18 65 16 97 18.31 1822
0.399 18 70 19 31 18 99 19 33 17 58 18.98 18 88
0.410 21.00 2091 20 58 2091 19 01 20 54 2042
0417 2170 22.00 21.67 21.99 19.98 21 60 2147
0430 24 20 24.23 23.88 24 20 21.98 2377 2359
0.437 25.10 25.47 2512 2542 23.09 2498 24 77
ARD% 3.32 1.92 340 520 2.35 206
4The MC simulation data are from Dickman and Hall (1988)
Table 4
Comparison of equations of state from various theories and MC simulation for m =8
" PlpkT

MC* TPT! TPT2 SPT PY-CS GF-D This work
0.066 190 2.26 2.15 2.26 222 221 198
0131 379 428 405 427 4.08 418 382
0176 584 6 40 607 6.39 5.99 624 595
0227 905 9.67 9.24 9 68 8.90 9.44 908
0267 1243 13.23 1270 13.25 12 03 12.90 12 60
0.308 17 50 18.09 17.47 18.13 16 29 17.63 17 41
0.332 21.90 2168 2100 21.73 19 43 2112 2093
ARD% 843 468 8.41 7.11 657

4« The MC simulation data are from Dickman and Hall (1988)
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papers of Denlinger and Hall (1990) and Gao and Weiner (1989). The calculated results from
our equation and the computer simulation data for the systems with m =2, 3, 4, 8, 16, 32, 51
and 201 are listed in Tables 1-8. For comparison, the TPT1, TPT2, SPT, PY-CS and GF-D
theories were used to calculate the compressibility factors also and the calculated results with the
average relative deviation (ARD?%) are listed in Tables 1-8 also.

Table 5
Comparison of equations of state from various theones and computer simulation for m = 16
] PlpkT

MC, MD ¢ TPT1 TPT2 SPT PY-CS GF-D This work
0.080 376° 4.03 373 4.02 3.89 390 328
0.100 423° 5.13 475 5.12 4.90 4.96 423
0.105 467 5.43 5.03 542 5.17 525 450
0.148 732° 8 56 796 8.55 7.99 8.28 7 40
0.157 8.44 9.35 871 934 869 905 815
0200 1250 1392 1306 1391 1272 1348 12.58
0205 13.20° 14 48 13 60 14 48 1321 14 02 1314
0209 14 15 1506 14 16 15.06 1372 14.59 1371
0.231 1590° 18 20 1718 1821 16 46 17 63 16 80
0247 19 10 20 80 1971 20 83 1873 20 16 19 39
0.247 1820° 20 80 19.71 20.83 18.73 20 16 19 39
0262 2259 2354 22 37 23.58 21 10 22 81 22.08
0.272 24.10 25.47 24 24 25.51 2278 24.68 2399
0314 3483 3567 34 22 35.75 31.60 34.54 34.04
0367 5225 5389 5216 5396 4731 5210 5167
0419 77 09 80 61 78.59 80 46 70 34 7773 76 75
0471 11176 12123 11892 120 31 105 45 116 50 11335
ARD% 979 421 971 591 634 275

4 The MC simulation data are from Dickman and Hall (1988); MD simulation data are from Denlinger and Hall
(1990) and Gao and Weiner (1989)
> MC simulation data.

Table 6
Comparison of equations of state from various theories and MD simulation for m = 32

" PlpkT

MD ¢ TPTI1 TPT2 SPT PY-CS GF-D This work
0100 7.08 8.98 816 8.95 8 50 8 62 705
0200 23 00 26 19 24 38 26 18 2372 2525 2333
0.250 3700 40 80 38 44 40 85 36 37 3937 3773
0 300 57 60 61.77 58.86 61.91 54 41 59 62 58 42
ARD% 14 55 6 83 14.54 759 10.35 130

2 The MD simulation data are from Denlinger and Hall (1990)
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Comparison of equations of state from varnous theories and MD simulation for m = 51

Y

PlpkT

MD ¢ TPT1 TPT2 SPT PY-CS GF-D
0105 11 46 14 48 1307 14.43 1361 1385
0 157 2304 26.59 24 35 26 54 24 38 2553
0195 34 87 3889 3601 38 86 35.14 3741
0243 56.56 60 15 56.44 60.22 53.54 5796
0309 101 04 104.60 99 68 104 82 91 64 100 79
0340 130 17 134 21 128 71 134 47 116 94 129 25
0367 160 56 166 28 160 28 166.47 144 33 160.00
0419 23812 250 60 243 62 250.07 216 37 240 53
0471 346 51 37905 371 10 37595 326 45 36256
ARDY, 939 392 925

Table 8

¢ The MD simulation data are from Gao and Wemer (1989)

Comparison of equations of state from various theories and MD simulation for m = 201

] PlpkT
MD ¢ TPTI TPT2 SPT

0 105 36 80 5326 47 54 5307
0157 79 44 100 46 91.39 100 24
0209 152 11 169 85 157 21 169 82
0262 256 20 273 56 257 11 27397
0314 407 16 422 85 402 55 42376
0.367 621 54 647 96 623.66 648 66
0419 92779 979.13 950 89 976 95
0471 1354 76 1484.03 1451 87 1471 58
ARDY, 14 10 738 1392

* The MD simulation data are from Gao et al (1989)

PY-CS GF-D

49 78 5072
91 64 96 16
15199 163 11
24110 26310
368 52 406 70
560 14 622 41
842 21 938 25
1273 63 1417 13
[T 40 9135

This work
1122
2239
3426
5518
98 96
127 74
158 48
23710
35156

1 80

This work
40 04
83 40

150 57
25284
399 52
61624
924 32

137245

257

From Tables 1-3, 1t can be seen that for short chain molecules good agreement between the
calculated and computer simulation values are obtained for TPT1, TPT2, SPT, GF-D and our
equation, but Tables 4—8 indicate that for long chain molecules the results of our equation are
better than those calculated from the other theories; even the results of TPT2 are more accurate

than those of TPTI.

Fig. 2 gives the relative deviation in compressibility factor for the chamn molecule with
m = 201 calculated from six theories. When # is small ( < 0.2), the deviations between the five
equations (TPT1, TPT2, SPT, PY-CS, GF-D) and the computer simulation data are very
large. When # becomes bigger, TPT2, GF-D and our equation gives good results; TPT1 and
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Fig. 2. Comparison of the relative deviation 1in compressibility factor for the chain molecule with m = 201 calculated
from six theories: *, TPT1, A, TPT2, O, SPT, x, PY-CS, +. GF-D; R, this work

SPT give higher results; the PY-CS equation yields much lower results than the computer
simulation data. Over the whole range of 5, only our equation gives small relative deviations.

Table 9 shows the comparison between theoretical and computer simulation data for
compressibility factors of equimolar mixtures of dumbbells and tetraatomic molecules. In Table
10, a comparison between theoretical and computer simulation values of the compressibility
factor 1s given for hard spheres and homonuclear dumbbells at three different mole fractions, x,.
The error in the computer simulation data is estimated to be 3%. It is evident that the theoretical

Table 9

Compressibility factor of equimolar mixtures of dumbbells and tetra-atomic molecules

n

0 200
0.300
0350

ARD%

< The MC simulation data are from Boublik et al (1990).

PlpkT
MC* TPTI1 TPT2 SPT
394 394 3.86 3.94
770 770 7.57 7.72
10 65 10 81 10 65 10 84
052 1.29 070

This work

385
7 60
10 68

[32
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Table 10
Compressibility factor of bmary muixtures of hard spheres(1) and homonuclear hard dumbbells(2)

n X, PlpkT
MC* TPT1 TPT2 SPT PY-CS This work

035 0.25 595 591 590 592 581 591
043 025 974 962 9 61 963 943 962
030 050 4.88 491 489 492 4.79 491
043 050 11.06 10 94 1091 1095 10 57 10 94
035 075 726 731 7.26 733 702 7 31
043 075 1231 12 27 12 21 1227 11 70 1227
ARD% 077 103 076 334 0 80

4+ The MC simulation data are from Wojcik and Gubbins (1983)

compressibility factors calculated from TPT1, TPT2, SPT and our equation are in accord with
the computer simulation data. Tables 9 and 10 demonstrate that the proposed equation predicts
the behavior of these simple mixtures very well.

4. Conclusions

Based on the thermodynamic perturbation theory of Wertheim, the equation of state for a
hard-sphere chain system 1s presented. It 1s shown that this equation of state yields accurate
prediction of the compressibility factors of different molecular models including hard spheres
and hard dumbbells as well as flexible chains with up to 200 bonds in a molecule.
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List of symbols

radial distribution function

Boltzmann constant

bond length

number of spheres in a chain molecule
experimental point

total number of spheres

pressure (Pa)

absolute temperature (K)

mole fraction of chain molecule
fraction of spheres unbonded
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Greek letters

o parameter of non-sphericity

n packing fraction of hard chains

& reduced density

p number density of hard-sphere chain molecules (nm )
0. number density of total hard spheres (nm~?)

ps, number density of hard sphere i (nm?)

o hard-sphere diameter (nm)

Superscripts

cal calculation

DB dumbbells

hs  hard sphere

hsc  hard-sphere chain

MC Monte Carlo simulation

MD molecular dynamics simulation
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