Equațion of state for hard-sphere chain molecules

Yang-Xin Yu, Jiu-Fang Lu *, Jing-Shan Tong, Yi-Gui Li
Department of Chemical Engineering, Tsinghua Universtty, Beying, 100084, People's Republic of China
Recerved 3 May 1993, accepted in final form 9 May 1994

Abstract

An equation of state for homonuclear chain molecules is formulated on the basis of thermodynamic perturbation theory of Wertherm. It yields a very accurate prediction of the compressibility factor of different chan molecules including hard spheres and hard dumbbells as well as flexible chains with up to 200 bonds in a molecule In addition. a large number of molecular sımulation results are used to test the thermodynamic first-order perturbation theory (TPT1), the thermodynamic second-order perturbation theory (TPT2), the scaled particle theory (SPT), the Percus-Yevick and Carnahan-Starling (PY-CS) equatıon, the generalized Flory-Dimer equation (GF-D) and our equation For short chain molecules ($m \leq 4$), good agreement between the calculated and computer sumulation data can be obtained from all of the above equations, but for long chain molecules the equation proposed in this work is better than the other equations.

Keywords Theory, Equation of state, Hard-sphere chain molecule; Molecular simulation

1. Introduction

Real molecules are usually polyatomic except for the noble gases and metals, so it is important to develop equations of state for chain molecules. Simple models of chain molecules which take into account the repulsive forces between molecules are invariably based on repulsive hard-core potentials. A commonly used model is that of the athermal hard-sphere chain or freely jointed tangent spheres. This simple model can be used as a repulsive potential reference system. Once the thermodynamic properties of the hard-sphere chain molecules are known, the properties of realistic polymers can be obtained by using perturbation theory to consider the effects of the attractive forces in the usual way.

Wertheim (1987) introduced two equations of state for the hard-sphere chain fluid based on his thermodynamic perturbation theory (TPT) (Wertheim, 1984a, b, 1986a, b) of polymerization.

[^0]On the basis of the results of Wertheim and of Jackson et al. (1988), Boublik et al. (1990) formulated an equation of state for fluids of fused hard-sphere bodies. It is an extension of the general form of the equation of state that follows from the scaled particle theory (SPT). The generalized Flory-Dimer theory (GF-D) (Honell and Hall, 1989) is derived as a generalization of the well-known Flory (1942) lattice theory to continuous space. Chiew (1990) derived analytical expressions for an equation of state for the hard-sphere chain fluid based on the "particle-particle" Ornstein-Zernike integral equation in the Percus-Yevick (PY) approximation.

In this paper an equation of state is proposed on the basis of the thermodynamic perturbation theory of Wertheim (1984a, b, 1986a, b). This equation can be applied to systems of linear molecules and flexible chains. A comparison of several equations of state (TPT1, TPT2, SPT, PY-CS, GF-D and the present equation) is made by using a large number of computer simulation data published in the literature.

2. Theory

The equation of state for the hard-sphere chain fluid can be obtained using a simple perturbation theory of Wertheim for molecules with multiple bonding sites (Wertheim, 1984a, b, 1986a, b). When a chain molecule with sphere number m is formed, a mixture of hard-spheres with different diameters and a chain molecule with sphere number $m-1$ can be taken as a reference system.

Fig. 1 shows the formation of a hard-sphere molecule in which the number of spheres is m. The bond length is equal to the sum of the radii of two neighboring spheres, i.e. $l_{l /}=\left(\sigma_{t}+\sigma_{j}\right) / 2$. In Fig. 1, only $A_{t} B_{t+1}$ bonding is allowed. In this system, the compressibility factor of hard spheres and the chain contribution:

$$
\begin{equation*}
\frac{P}{\rho k T}=\frac{m P}{\rho_{\mathrm{s}} k T}=m Z^{\mathrm{hs}}+m Z^{\text {chaın }} \tag{1}
\end{equation*}
$$

Fig 1 Formation of a chain molecule with $m-1$ bonds
where the number density of total spheres, ρ_{s} is equal to $m \rho, P$ is the pressure of the system, T is the temperature, ρ is the number density of chain molecules and k is the Boltzmann constant. The term $Z^{\text {chain }}$ is given by
$Z^{\text {chain }}=Z_{12}^{\text {bond }}+Z_{23}^{\text {bond }}+\cdot+Z_{m-1 m}^{\text {bond }}=\sum_{i=1}^{m-1} Z_{l, t+1}^{\text {bond }}$
For the compressibility factor of hard spheres, we can employ the expression of Boublik (1970):
$Z^{\mathrm{hs}}=\frac{P V}{N k T}=\frac{6}{\pi \rho_{\mathrm{s}}}\left[\frac{\xi_{0}}{1-\xi_{3}}+\frac{3 \xi_{1} \xi_{2}}{\left(1-\xi_{3}\right)^{2}}+\frac{\xi_{2}^{3}\left(3-\xi_{3}\right)}{\left(1-\xi_{3}\right)^{3}}\right]$
The reduced densities ξ are defined as
$\xi_{n}=\frac{\pi}{6} \sum_{t} \rho_{\mathrm{s}, 1} \sigma_{t}^{n} \quad(n=0,1,2,3)$
When $\sigma_{1}=\sigma_{2}=\cdot=\sigma_{m}$, Eq. (3) reduces to the Carnahan and Starling equation for pure hard spheres:
$Z^{\mathrm{hs}}=\frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}$
where $\eta=(\pi / 6) \Sigma_{t} \rho_{\mathrm{s}, t} \sigma_{t}^{3}$.
The bonding terms in Eq. (2) is obtained from Jackson et al. (1988):
$Z_{t, t+1}^{\text {bond }}=\rho_{\mathrm{s}},\left[\frac{\partial X_{\mathrm{A}_{t}}}{\partial \rho_{\mathrm{s}}}\right]_{T, N}\left[\frac{1}{X_{\mathrm{A}_{1}}}-\frac{1}{2}\right]+\rho_{\mathrm{s}, t+1}\left[\frac{\partial X_{\mathrm{B}_{1+1}}}{\partial \rho_{\mathrm{s}}}\right]_{T, N}\left[\frac{1}{X_{\mathbf{B}_{i+1}}}-\frac{1}{2}\right]$
where $X_{\mathrm{A}_{i}}$ is the fraction of spheres i unbonded at site A . According to the perturbation theory of Wertheim, $X_{\mathrm{A}_{1}}$ and $X_{\mathrm{B}_{t+1}}$ can be expressed as
$X_{\mathrm{A}_{t}}=\frac{1}{1+\rho_{\mathrm{s}, t+1} X_{\mathrm{B}_{t+1}} \Delta_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}}$
$X_{\mathrm{B}_{l+1}}=\frac{1}{1+\rho_{\mathrm{s}, t} X_{\mathrm{A}_{t}} \Delta_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}}$
For short-range potentials, the function $\Delta_{\mathrm{A}_{t} \mathrm{~B}_{t}+1}$ is well approximated by Jackson et al. (1988):
$\Delta_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}=4 \pi g_{t, t+1}\left(\sigma_{l, t+1}\right) \sigma_{i, t+1}^{2} \int\left\langle f_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}(i, i+1)\right\rangle_{\omega_{t}, \omega_{t+1}} \mathrm{~d} r_{t, t+1}$
The factor $g_{t, t+1}\left(\sigma_{t, l+1}\right)$ is the $i-l+1$ contact value of the radial distribution function for the hard-sphere reference mixture with $\left(\sigma_{t, i+1}\right)=\left(\sigma_{t}+\sigma_{t+1}\right) / 2$. The term $\left\langle f_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}(i, i+1)\right\rangle_{i_{i}, \omega_{i}+1}$ $=\left\langle\exp \left(-\phi_{\mathrm{A}_{t} \mathbf{B}_{t+1}}^{\text {bond }} \mid k T\right)-1\right\rangle_{\omega_{t}, \omega_{t+1}}$ represents an angle average of the Mayer function for the $\mathrm{A}_{i} \mathbf{B}_{i+1}$ site-site intermolecular potential over all orientations of spheres i and $i+1$. The integration is over the intermolecular separation $r_{L t+1}$.

Since only $\mathbf{A}_{t} \mathbf{B}_{i+1}$ bonding is allowed, the number of spheres i bonded at A_{t} must equal the number of spheres $i+1$ bonded at B_{1+1} :
$\rho_{\mathrm{\checkmark}, t}\left(1-X_{\mathrm{A}_{t}}\right)=\rho_{\mathrm{\varsigma}, t+1}\left(1-X_{\mathrm{B}_{t+1}}\right)$
i.e.
$X_{\mathrm{B}_{t+1}}=1-\frac{\rho_{\mathrm{s}, t}}{\rho_{\mathrm{s} t+1}}\left(1-X_{\mathrm{A}_{t}}\right)$
Furthermore, if a pure fluid is formed in the limit of complete bonding we obtain $\rho_{\curlywedge 1}=\rho_{\varsigma, 2}=\quad=\rho_{\gtrdot m}$. So
$X_{\mathrm{A}_{t}}=X_{\mathrm{B}_{t+1}}=0$
After substituting these expressions into Eqs. (6) and (7) and rearranging, we have
$\lim _{x_{\mathrm{A}_{l} \rightarrow 0}}\left(\rho_{\curlyvee, t+1} \Delta_{\mathrm{A}_{i} \mathrm{~B}_{i}+1} X_{\mathrm{A}_{i}}^{2}+X_{\mathrm{A}_{2}}-1\right)=0$
$\lim _{x_{\mathbf{B}_{l+1} \rightarrow 0}}\left(\rho_{\mathrm{s}, l} \Delta_{\mathrm{A}_{t} \mathrm{~B}_{l+1}} X_{\mathrm{B}_{t+1}}^{2}+X_{\mathrm{B}_{l+1}}-1\right)=0$
Since $\rho_{\mathrm{s}}=\Sigma_{t=1}^{m} \rho_{\mathrm{s}, t}=m \rho_{\mathrm{s}, t}=m \rho_{\mathrm{s} . t+1}$, Eqs. (11) and (12) become
$\left(\frac{\rho_{\mathrm{s}} \Delta_{\mathrm{A}_{t} \mathbf{B}_{t+1}}}{m}\right) X_{\mathrm{A}_{t}}^{2}-1=0$
$\left(\frac{\rho_{\mathrm{s}} \Delta_{A_{i} \mathbf{B}_{2+1}}}{m}\right) X_{\mathbf{B}_{i+1}}^{2}-1=0$
i.e.
$X_{\mathrm{A}_{t}}^{2}=X_{\mathrm{B}_{t+1}}^{2}=\frac{m}{\rho_{,} \Delta_{\mathrm{A}_{1} \mathrm{~B}_{t+1}}}$
Substituting Eq. (15) into Eq. (5), we obtain
$Z_{l, l+1}^{\text {bond }}=-\frac{1}{m}\left[1+\frac{\rho_{\mathrm{s}}}{\Delta_{\mathrm{A}_{t} \mathrm{~B}_{t+1}}}\left(\frac{\partial \Delta_{\mathrm{A}_{2} \mathrm{~B}_{t+1}}}{\partial \rho_{\mathrm{s}}}\right)_{T, N}\right]$
The bonding contributions can now be expressed in terms of the contact values of the hard-sphere radial distribution functions:
$Z_{t, t+1}^{\text {bond }}=-\frac{1}{m}\left\{1+\frac{\rho_{\mathrm{s}}}{g_{t, l+1}\left(\sigma_{t, l+1}\right)}\left[\frac{\partial g_{t, l+1}\left(\sigma_{t, t+1}\right)}{\partial \rho_{\mathrm{s}}}\right]_{T, N}\right\}$
When $i=1$, the reference system is a hard-sphere mixture system. The contact value of the radial distribution function is
$g_{12}\left(\sigma_{12}\right)=g_{12}^{\text {hs }}\left(\sigma_{12}\right)=g^{\text {hs }}(\sigma)$

Substituting the above equation into Eq. (17), we can obtain
$Z_{12}^{\text {bond }}=-\frac{1}{m}\left[1+\rho_{\mathrm{s}}\left[\frac{\partial \ln g^{\text {hs }}(\sigma)}{\partial \rho}\right]_{T, N}\right\}$
Also let $Z_{12}=m Z_{12}^{\text {bond }}$.
When $2 \leq i \leq m-1$, the reference system is a mixture of hard spheres and a hard-sphere chain molecule, so

$$
\begin{aligned}
g_{l++1}\left(\sigma_{l, l+1}\right) & =g_{t, l+1}^{\mathrm{hs}}\left(\sigma_{l i+1}\right)-\Delta g_{l, l+1}\left(\sigma_{l, l+1}\right) \\
& =g^{\mathrm{hs}}(\sigma)-\Delta g(\sigma)
\end{aligned}
$$

where $\Delta g(\sigma)$ is the difference between radial distribution functions in the hard-sphere mixture and hard-sphere chain mixture.
$Z_{t+1}^{\text {bond }}=-\frac{1}{m}\left\{1+\rho_{\mathrm{s}}\left[\frac{\partial \ln \left[g^{\text {hs }}(\sigma)-\Delta g(\sigma)\right]}{\partial \rho_{\mathrm{s}}}\right]_{T . N}\right\}$
Since
$\frac{\partial \ln \left[g^{\mathrm{h}}(\sigma)-\Delta g(\sigma)\right]}{\partial \rho_{\mathrm{s}}}=\frac{\partial \ln g^{\mathrm{hs}}(\sigma)}{\partial \rho_{\mathrm{s}}}+\frac{\partial \ln \left[1-\Delta g(\sigma) / g^{\mathrm{hs}}(\sigma)\right]}{\partial \rho_{\mathrm{s}}}$
we have
$Z_{l, l+1}^{\text {bond }}=Z_{12}^{\text {bond }}=\frac{Z_{12}}{m} \quad(i=1)$
$Z_{l, l+1}^{\text {bond }}=\frac{Z_{12}}{m}-\frac{\rho_{\mathrm{s}}}{m} \frac{\partial \ln \left[1-\Delta g(\sigma) / g^{\text {hs }}(\sigma)\right]}{\partial \rho_{\mathrm{s}}} \quad(2 \leq i \leq m-1)$
By combining the hard-sphere reference term with Eq. (20), the final expression for the molecular compressibility factor is given by
$Z^{\mathrm{hsc}}=\frac{P}{\rho k T}=m Z^{\mathrm{hs}}+(m-1) Z_{12}-(m-2) \rho_{\mathrm{s}} \frac{\partial \ln \left[1-\Delta g(\sigma) / g^{\mathrm{hs}}(\sigma)\right]}{\partial \rho_{\mathrm{s}}}$
When $m=2$, the chain molecule becomes the dumbbell molecule and the compressibility factor Z^{DB} of the dumbbell system can be obtained from Eq. (21):
$Z^{\mathrm{DB}}=2 Z^{\mathrm{hs}}+Z_{12}$
$Z^{\text {DB }}$ can be expressed by the Tildesley-Streett equation (Tildesley and Streett, 1980):
$Z^{\mathrm{DB}}=\frac{1+2.45696 \eta+4.10386 \eta^{2}-3.75503 \eta^{3}}{(1-\eta)^{3}}$
We can obtain Z_{12} from Eqs. (22), (23) and (4):
$Z_{12}=\frac{1-0.45696 \eta-2.10386 \eta^{2}+1.75503 \eta^{3}}{(1-\eta)^{3}}$

The third term of Eq. (21) is small and it can be regressed from the computer simulation data of chain molecules (Dickman and Hall, 1988; and Gao and Weiner, 1989).
$\rho_{\mathrm{s}} \frac{\partial \ln \left[1-\Delta g(\sigma) / g^{\text {hs }}(\sigma)\right]}{\partial \rho_{\mathrm{s}}}=\frac{0.75497 \eta\left(1-4.6260 \eta+6.3205 \eta^{2}\right)}{(1-\eta)^{3}}$
From Eqs. (24), (25) and (21), the equation of state for a hard-sphere chain system is obtained:

$$
\begin{align*}
\frac{P}{\rho k T}= & m \frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}-(m-1) \frac{1-0.45696 \eta-2.10386 \eta^{2}+1.75503 \eta^{3}}{(1-\eta)^{3}} \\
& -(m-2) \frac{0.75497 \eta\left(1-4.6260 \eta+6.3205 \eta^{2}\right)}{(1-\eta)^{3}} \tag{26}
\end{align*}
$$

When the above equation is applied to a mixture of hard-sphere chain molecules, m is equal to $\Sigma_{t} x_{t} m_{t}$, where x_{t} is the mole fraction of the molecules with sphere number equal to m_{t}.

Other equations used for hard-sphere chain molecules are listed as follows.
(1) Thermodynamic first-order perturbation theory (TPT1) (Wertheim, 1987):
$\frac{P}{\rho k T}=m \frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}-(m-1)\left[1-\frac{\eta}{(2-\eta)}+\frac{3 \eta}{(1-\eta)}\right]$
(2) Thermodynamic second-order perturbation (TPT2) (Wertheim, 1987):

$$
\begin{align*}
\frac{P}{\rho k T}= & m \frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}-(m-1)\left[1-\frac{\eta}{(2-\eta)}+\frac{3 \eta}{(1-\eta)}\right] \\
& -(m-\tau)\left(1+\frac{1.284 \eta}{1+1.284 \eta}\right) \tag{28}
\end{align*}
$$

where
$m-\tau=\frac{m}{2}-\frac{m\left(1+4 \lambda-4 \lambda / m^{2}\right)^{1 / 2}}{2(1+4 \lambda)}-\frac{2 \lambda}{(1+4 \lambda)}$
$\lambda=0.233633 \eta(1+284 \eta)$
(3) Scaled particle theory (SPT) (Boublik et al., 1990):
$\frac{P}{\rho k T}=\frac{1}{1-\eta}+\frac{3 \alpha \eta}{(1-\eta)^{2}}+\frac{\eta^{2}\left[(49 \alpha-31)-\eta(11 \alpha-7)-\eta^{2}(25 \alpha-21)\right]}{6(1-\eta)^{3}}$
where $\alpha=(m+1) / 2$. In the case of a mixture of chain molecules, α is given by the relationship $\alpha=\sum_{t} x_{t} m_{t} / 2+1 / 2$
(4) Percus-- Yevick and Carnahan-Starling (PY-CS) theory (Chiew, 1990):
$\frac{P}{\rho k T}=m \frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}-(m-1) \frac{1+\eta / 2}{(1-\eta)^{2}}$
(5) Generalized Flory-Dimer theory (GF-D) (Honell et al., 1989):

$$
\begin{align*}
\frac{P}{\rho k T}= & {\left[\frac{V_{\mathrm{e}}(n)-V_{\mathrm{e}}(1)}{V_{\mathrm{e}}(2)-V_{\mathrm{e}}(1)}\right]\left[\frac{1+2.45696 \eta+4.10386 \eta^{2}-3.75503 \eta^{3}}{(1-\eta)^{3}}\right] } \\
& -\left[\frac{V_{\mathrm{e}}(n)-V_{\mathrm{e}}(2)}{V_{\mathrm{e}}(2)-V_{\mathrm{e}}(1)}\right]\left[\frac{1+\eta+\eta^{2}-\eta^{3}}{(1-\eta)^{3}}\right] \tag{33}
\end{align*}
$$

where $V_{\mathrm{e}}(1)=4 \pi \sigma^{3} / 3, V_{\mathrm{e}}(2)=9 \pi \sigma^{3} / 4, V_{\mathrm{e}}(3)=9.82605 \sigma^{3}, V_{\mathrm{e}}(n)$ is estimated from $\mathrm{V}_{\mathrm{e}}(n)=V_{\mathrm{e}}(3)+(n-3)\left[V_{\mathrm{e}}(3)-V_{\mathrm{e}}(2)\right]$

3. Results and discussion

Eq. (26) was used to calculate the compressibility factor of hard-sphere chain molecules with different chain lengths and the calculated results are compared with molecular simulation data.

Table 1
Comparison of equations of state from various theories and MC simulation for $m=2$

η	$P / \rho k T$						
	MC ${ }^{\text {a }}$	TPT1	TPT2	SPT	PY-CS	GF-D	This work
0101	175	177	176	177	176	1.77	177
0200	318	317	314	3.18	3.09	317	317
0.312	6.41	629	624	631	603	6.30	6.30
0.398	11.16	1096	10.88	10.97	10.38	10.96	1096
0450	15.60	1561	15.52	1559	1472	1559	1559
ARD $\%^{\text {b }}$		102	148	093	4.33	097	097

${ }^{\text {a }}$ The MC simulation data are from Archer and Jackson (1991)
$\left.{ }^{\mathrm{b}} \mathrm{ARD}{ }^{€} 乡=\frac{100}{M} \sum_{i=1}^{M}\left|Z_{i}^{\text {cal }}-Z_{t}^{\mathrm{MC}}\right| \right\rvert\, Z_{t}^{\mathrm{MC}}$ or $\left.\mathrm{ARD} \%=\frac{100}{M} \sum_{i=1}^{M}\left|Z_{t}^{\text {cal }}-Z_{t}^{\mathrm{MD}}\right| \right\rvert\, Z_{t}^{\mathrm{MD}}$.
Table 2
Comparison of equations of state from various theories and MC simulation for $m=3$

η	$P / \rho k T$						
	MC ${ }^{\text {a }}$	TPT1	TPT2	SPT	PY-CS	GF-D	This work
0050	1.42	1.42	140	1.42	141	141	138
0100	200	2.00	197	2.00	197	199	194
0300	771	770	7.57	772	723	764	760
0401	15.23	15.39	1519	1540	1421	1522	15.17
0453	2168	22.31	2208	2225	2049	2201	21.86
ARD\%		076	149	074	405	071	180

[^1]The Monte Carlo (MC) data were from Archer and Jackson (1991), Amos and Jackson (1991) and Dickman and Hall (1988). For longer chain systems, more accurate compressibility factor data can be obtined from molecular dynamics (MD) simulation. The MD data were from the

Table 3
Comparison of equations of state from various theories and MC simulation for $m=4$

η	$P / \rho k T$						This work
	MC ${ }^{\text {d }}$	TPT1	TPT2	SPT	PY-CS	GF-D	
0107	225	2.37	230	237	2.32	234	223
0205	473	4.88	474	4.88	463	4.82	469
0252	640	682	664	6.83	638	6.73	662
0262	7.46	732	713	7.33	683	7.22	712
0278	8.02	819	799	821	762	8.08	799
0289	870	8.85	864	887	821	873	864
0.310	980	1027	1003	1029	948	1012	1004
0323	10.91	1125	1100	1128	1036	1108	1101
0340	12.20	1268	1242	1271	1165	1249	1243
0349	12.70	1352	1324	1355	1239	1331	13.25
0.359	1350	1451	14.23	1454	1328	14.28	14.22
0376	1610	1638	16.08	1640	1495	1611	1604
0.394	1780	18.63	18.32	1865	1697	18.31	1822
0.399	1870	1931	1899	1933	1758	18.98	1888
0.410	21.00	2091	2058	2091	1901	2054	2042
0417	2170	22.00	21.67	21.99	19.98	2160	2147
0430	2420	24.23	23.88	2420	21.98	2377	2359
0.437	25.10	25.47	2512	25.42	23.09	2498	2477
$\mathrm{ARD}^{0}{ }_{0}$		3.32	1.92	340	520	2.35	206

${ }^{\text {d }}$ The MC simulation data are from Dickman and Hall (1988)

Table 4
Comparison of equations of state from various theories and MC simulation for $m=8$

η	$P / \rho k T$						
	MC ${ }^{\text {d }}$	TPT1	TPT2	SPT	PY-CS	GF-D	This work
0.066	190	2.26	2.15	2.26	222	221	198
0131	379	428	405	427	4.08	418	382
0176	584	640	607	6.39	5.99	624	595
0227	905	9.67	9.24	968	8.90	9.44	908
0267	1243	13.23	1270	13.25	1203	12.90	1260
0.308	1750	18.09	17.47	18.13	1629	17.63	1741
0.332	21.90	2168	2100	21.73	1943	2112	2093
ARD\%		843	468	8.41	7.11	657	169

[^2]papers of Denlinger and Hall (1990) and Gao and Weiner (1989). The calculated results from our equation and the computer simulation data for the systems with $m=2,3,4,8,16,32,51$ and 201 are listed in Tables $1-8$. For comparison, the TPT1, TPT2, SPT, PY-CS and GF-D theories were used to calculate the compressibility factors also and the calculated results with the average relative deviation (ARD\%) are listed in Tables 1-8 also.

Table 5
Comparison of equations of state from various theories and computer simulation for $m=16$

η	$P / \rho k T$						
	MC, MD ${ }^{\text {d }}$	TPT1	TPT2	SPT	PY-CS	GF-D	This work
0.080	$376{ }^{\text {b }}$	4.03	373	4.02	3.89	390	328
0.100	$4.23{ }^{\text {b }}$	5.13	475	5.12	4.90	4.96	423
0.105	467	5.43	5.03	542	5.17	525	450
0.148	$732{ }^{\text {b }}$	856	796	8.55	7.99	8.28	740
0.157	8.44	9.35	871	934	869	905	815
0200	1250	1392	1306	1391	1272	1348	12.58
0205	$13.20{ }^{\text {b }}$	1448	1360	1448	1321	1402	1314
0209	1415	1506	1416	15.06	1372	14.59	1371
0.231	$1590{ }^{\text {b }}$	1820	1718	1821	1646	1763	1680
0247	1910	2080	1971	2083	1873	2016	1939
0.247	$1820{ }^{\text {b }}$	2080	19.71	20.83	18.73	2016	1939
0262	2259	2354	2237	23.58	2110	2281	22.08
0.272	24.10	25.47	2424	25.51	2278	24.68	2399
0314	3483	3567	3422	35.75	31.60	34.54	34.04
0367	5225	5389	5216	5396	4731	5210	5167
0419	7709	8061	78.59	8046	7034	7773	7675
0471	11176	12123	11892	12031	10545	11650	11335
ARD \%		979	421	971	591	634	275

${ }^{\text {d }}$ The MC sımulation data are from Dickman and Hall (1988): MD simulation data are from Denlinger and Hall (1990) and Gao and Weiner (1989)
${ }^{\mathrm{b}}$ MC simulation data.

Table 6
Comparison of equations of state from various theories and MD simulation for $m=32$

η	$P / \rho k T$						
	MD ${ }^{\text {a }}$	TPT1	TPT2	SPT	PY-CS	GF-D	This work
0100	7.08	8.98	816	8.95	850	862	705
0200	2300	2619	2438	2618	2372	2525	2333
0.250	3700	4080	3844	4085	3637	3937	3773
0300	5760	61.77	58.86	61.91	5441	5962	5842
ARD \%		1455	683	14.54	759	10.35	130

[^3]Table 7
Comparison of equations of state from various theories and MD simulation for $m=51$

Table 8
Comparison of equations of state from various theories and MD simulation for $m=201$

η	$P / \rho k T$						This work
	MD *	TPT1	TPT2	SPT	PY-CS	GF-D	
0105	3680	5326	4754	5307	4978	5072	4004
0157	7944	10046	91.39	10024	9164	9616	8340
0209	15211	16985	15721	16982	15199	16311	15057
0262	25620	27356	25711	27397	24110	26310	25284
0314	40716	42285	40255	42376	36852	40670	39952
0.367	62154	64796	623.66	64866	56014	62241	61624
0419	92779	979.13	95089	97695	84221	93825	92432
0471	135476	1484.03	145187	147158	127363	141713	137245
$\mathrm{ARD}^{\%}$		1410	738	1392	1140	935	257

${ }^{4}$ The MD simulation data are from Gao et al (1989)

From Tables $1-3$, it can be seen that for short chain molecules good agreement between the calculated and computer simulation values are obtained for TPT1, TPT2, SPT, GF-D and our equation, but Tables $4-8$ indicate that for long chain molecules the results of our equation are better than those calculated from the other theories; even the results of TPT2 are more accurate than those of TPT1.

Fig. 2 gives the relative deviation in compressibility factor for the chan molecule with $m=201$ calculated from six theories. When η is small ($\eta<0.2$), the deviations between the five equations (TPT1, TPT2, SPT, PY-CS, GF-D) and the computer simulation data are very large. When η becomes bigger, TPT2, GF-D and our equation gives good results: TPT1 and

Fig. 2. Comparison of the relative deviation in compressibility factor for the chain molecule with $m=201$ calculated from s1x theor1es: *, TPT1, \triangle, TPT2, $\square, S P T, \times$, PY-CS,,$+ \mathrm{GF}-\mathrm{D}$; \square, this work

SPT give higher results; the PY-CS equation yields much lower results than the computer simulation data. Over the whole range of η, only our equation gives small relative deviations.

Table 9 shows the comparison between theoretical and computer simulation data for compressibility factors of equimolar mixtures of dumbbells and tetraatomic molecules. In Table 10 , a comparison between theoretical and computer simulation values of the compressibility factor is given for hard spheres and homonuclear dumbbells at three different mole fractions, x_{2}. The error in the computer simulation data is estımated to be 3%. It is evident that the theoretical

Table 9
Compressibility factor of equimolar mixtures of dumbbells and tetra-atomic molecules

[^4]Table 10
Compressibility factor of binary mixtures of hard spheres(1) and homonuclear hard dumbbells(2)

η	X_{2}	$P / \rho k T$					This work
		$\mathrm{MC}^{\text {d }}$	TPT1	TPT2	SPT	PY-CS	
035	0.25	595	591	590	592	581	591
043	025	974	962	961	963	943	962
030	050	4.88	491	489	492	4.79	491
043	050	11.06	1094	1091	1095	1057	1094
035	075	726	731	7.26	733	702	731
043	075	1231	1227	1221	1227	1170	1227
ARD\%			077	103	076	334	080

${ }^{\text {a }}$ The MC simulation data are from Wojcik and Gubbins (1983)
compressibility factors calculated from TPT1, TPT2, SPT and our equation are in accord with the computer simulation data. Tables 9 and 10 demonstrate that the proposed equation predicts the behavior of these simple mixtures very well.

4. Conclusions

Based on the thermodynamic perturbation theory of Wertheim, the equation of state for a hard-sphere chain system is presented. It is shown that this equation of state yields accurate prediction of the compressibility factors of different molecular models including hard spheres and hard dumbbells as well as flexible chains with up to 200 bonds in a molecule.

Acknowledgment

This work was supported by the National Science Foundation of China.

List of symbols

g radial distribution function
k Boltzmann constant
l bond length
$m \quad$ number of spheres in a chain molecule
M experimental point
N total number of spheres
$P \quad$ pressure (Pa)
T absolute temperature (K)
x mole fraction of chain molecule
X fraction of spheres unbonded

Greek letters

$\alpha \quad$ parameter of non-sphericity

$\eta \quad$ packıng fraction of hard chains
$\xi \quad$ reduced density
$\rho \quad$ number density of hard-sphere chain molecules $\left(\mathrm{nm}^{-3}\right)$
$\rho_{\varsigma} \quad$ number density of total hard spheres $\left(\mathrm{nm}^{-3}\right)$
$\rho_{\mathrm{s}, t} \quad$ number density of hard sphere $i\left(\mathrm{~nm}^{-3}\right)$
$\sigma \quad$ hard-sphere diameter (nm)

Superscripts

cal calculation
DB dumbbells
hs hard sphere
hsc hard-sphere chain
MC Monte Carlo simulation
MD molecular dynamics simulation

References

Amos, M.D. and Jackson, G, 1991. BHS theory and computer simulations of linear heteronuclear triatomic hard-sphere molecules Mol Phys, 74(1). 191-210
Archer. A.L and Jackson, G., 1991. Theory and computer simulations of heteronuclear diatomic hard-sphere molecules (hard dumbbells). Mol Phys, 73(4) 881-896
Boublık, T., 1970 Hard-sphere equation of state J Chem. Phys, 53 471-472.
Boublik, T., Vega, C and Diaz-Peña, M., 1990 Equation of state of chain molecules. J Chem Phys, 93(1) 730736
Chiew, Y C., 1990. Percus-Yevick integral equation theory for athermal hard sphere chains. Part I Equation of state Mol Phys., 70(1) 129-143
Denlinger, M A and Hall, C.K, 1990 Molecular dynamic sımulation results for the pressure of hard-chain fluds Mol Phys., 71(3): 541-559
Dickman, R. and Hall, C K , 1988. Hıgh density Monte Carlo simulation of chain molecules: bulk equation of state and density profile near walls J Chem. Phys, 89(5): 3168-3174
Flory, P J, 1942 Thermodynamics of high polymer solutions. J Chem Phys., 1051
Gao, J and Weiner, J.H, 1989 Contribution of covalent bond force to pressure in the polymer melts J Chem Phys. 91(5)•3168-3173
Honell. K G and Hall, C K., 1989 A new equation of state for athermal chans. J Chem Phys, 90 18411855.

Jackson. G. Chapman, W G. and Gubbins, K E, 1988. Phase equilibria of associatıng fluids spherical molecules with multiple bonding sites. Mol Phys, 65(1). 1-31
Tildesley, D.J and Streett, W B , 1980. An equation of state for hard dumbbell fluids Mol Phys, 41(1)• 8594
Wertheım, M S., 1984 a Fluids with highly directional attractıve forces: I. Statıstical thermodymanics J. Stat Phys, 35. 19-34.

Wertheim, M S., 1984b Fluids with highly directional attractive forces II Thermodynamic perturbation theory and integral equations J. Stat Phys., 35 35~47

Wertheim, M S , 1986a Fluids with highly directional attractive forces III Multiple attraction sites J Stat Phys, 42 459-476
Wertheim, M.S , 1986b. Fluids with highly directional attractive forces IV Equilibrium polymerization J Stat Phys, 42 477-492
Wertherm, MS, 1987 Thermodynamic perturbation theory of polymerization J Chem Phys, 87(12) 73237331
Wojcik, M and Gubbins, K.E, 1983 Thermodymanics of hard dumbbell mixtures. Mol Phys, 49(6) 14011415

[^0]: * Corresponding author

[^1]: ${ }^{\text {a }}$ The MC simulation data are from Amos and Jackson (1991)

[^2]: ${ }^{d}$ The MC simulation data are from Dickman and Hall (1988)

[^3]: ${ }^{\mathrm{a}}$ The MD simulation data are from Denlinger and Hall (1990)

[^4]: ${ }^{\text {d }}$ The MC simulation data are from Boublik et al (1990).

