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bstract

The ion density profiles and mean electrostatic potentials around DNA from the Monte Carlo simulations are compared with the predictions
f the Poisson–Boltzmann equation and the density functional theory. The DNA molecules are modeled as a charged cylinder while the ions
re represented as charged hard spheres with different diameter. In the density functional theory, the Helmholtz free energy functional due to
ard-sphere repulsion and electrostatic interaction are obtained from the modified fundamental measure theory and a quadratic functional Taylor
xpansion, respectively. The results show that due to the inclusion of the ion–ion correlation, the density functional theory is more accurate than
he Poisson–Boltzmann equation. The density functional theory gives accurate ion structures and mean electrostatic potentials near the surface

f DNA. When the established density functional theory is combined with the cell model, the osmotic coefficients of aqueous DNA–electrolyte
olutions can be predicted. The results show that the DFT-cell model captures the essential features of the experimental osmotic coefficient, but
ails to give a quantitative description. Possible reasons for this discrepancy are discussed.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The physical–chemical and biological properties of nucleic
cids in an aqueous solution are strongly influenced by the strong
lectrostatic forces that depend on the type and concentration of
ounterions in solution [1]. The counterions in the immediate
icinity of a highly charged DNA polyanion are believed to be
lectrostatically associated, rather than immobilized at specific
ites. A detailed investigation of the osmotic properties and the
patial distribution of mixed-size counterions in the vicinity of
he surface of DNA will lead to a macro- and microscopic under-
tanding of the DNA–electrolyte solution.
Computer simulation studies and various theoretical
xplorations have been carried out for the structures and ther-
odynamic properties of counterions around DNA in aqueous
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olutions. It is simple and popular to model DNA as infinitely
ong rigid charged cylinder, although more realistic models
ave also been studied. Ten years ago, Jayaram and Beveridge
2] provided a good review of the theoretical and computational
nvestigations of the ion atmosphere of DNA as related to issues
f both structure and function. In their review, Manning’s ele-
entary yet elegant concept of “counterion condensation” (CC)

s revisited and shown to be good in several problems including
nalyses of competitive binding equilibria [3]. Another classical
heory known as Poisson–Boltzmann (PB) equation is also
idely used in this field. The PB equation can be solved either

nalytically for simple geometries, or numerically for more
omplicated physical models such as all-atom model of DNA,
tc. [2]. This approximation is adequate for dilute solution of
onovalent cations but leads to bad results for the systems at

igh bulk concentration or involving multivalent cation due to its
eglect of the excluded volume effect and correlation between

mall ions [4–6]. To consider the exclude volume effect and ion
orrelation, several theoretical approaches are proposed. These
pproaches including the hypernetted-chain/mean-spherical
HNC/MSA) [7], modified Poisson–Boltzmann theory [8,9]
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tion is also known exactly, and is given by

F ex
C = 1

2

∫ ∫
dr1 dr2

∑zizje
2ρi(r1)ρj(r2)

ε|r1 − r2| (9)
Y.-X. Yu et al. / Fluid Phas

nd density functional theories [6,10] lead to a good description
f the electrical double layer in various geometries, but
ost of them are limited to the restricted primitive model of

lectrolyte around DNA. Recently, we have extended the DFT
o DNA–electrolyte solutions with the mixed-sized counterions
nd found that the DFT is fine for these systems [11].

In principle, any theories for the cylinder electric double layer
an be properly combined with the cell model to predict the
smotic pressures or osmotic coefficients of DNA–electrolyte
olutions [12-14]. For example, Blaul et al. [15] have used the
oisson–Boltzmann cell model to predict the osmotic coeffi-
ient of a synthetic stiff-chain polyelectrolyte solution without
dded salt. However, there is no report on the combination of
he DFT with cell model. To investigate the applicability of the
FT-cell model to the osmotic coefficient of DNA–electrolyte

olution, we present a DFT and carry out Monte Carlo simula-
ions for the systems with mixed-size counterions. Comparisons
f the results from the DFT with those from the Monte Carlo
MC) simulations are made and then the DFT are combined
ith the cell model to predict osmotic coefficient of aqueous
NA–electrolyte solutions.

. Theory

.1. Molecular model

The DNA molecule is modeled as an infinitely long, impen-
trable charged cylinder. The radius of the hard cylindrical core
f the DNA is R. We assume that there is a uniform charge distri-
ution on the surface of DNA with a magnitude e/2�Rb, where
denotes charge of electron and b is the inverse of linear charge
ensity on the DNA molecules. All ions are modeled as charged
ard spheres with various diameters σα, and the minimal separa-
ion between ionα and axis of the DNA is R + σα/2. The primitive

odel of electrolyte solution is used, i.e., the solvent water
ielectric constant is � = 78.4 at any position, corresponding to
hat of the pure water at T = 298 K. The ion-polyion interaction
otential is given by

ext
i (r) =

⎧⎨
⎩

−2e2zi

εb
ln r r ≥ R+ σi

2
∞ otherwise

(1)

here e denotes charge of electron, zi and σi stand for valance
nd diameter of ion i, respectively, and r denotes the distance
etween axis of DNA and center of ion i.

The ion–ion interaction potential is given by

ij =

⎧⎪⎨
⎪⎩

e2zizj

ε|ri − rj| |ri − rj| ≥ σi + σj

2

∞ otherwise

(2)

here ri is the position of ion i.

The mean electrostatic potential ψ(r) due to the uniform sur-

ace charge density at the surface of DNA as well as the internal
on distributions satisfies the corresponding Poisson equation. It
an be derived from Poisson equation in one dimension and is

T
P
(
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iven by [11]

(r) = −4πe

ε

∞∫
r

ln

(
r′

r

) ∑
i

ρi(r
′)zir′ dr′ (3)

ith the electro-neutrality condition given by

πb

∞∫
R

dr r
∑
i

ρi(r)zi = 1 (4)

here r and r′ is the distance between the ion center and polyion
xis, the subscript i denotes ion species i.

.2. Density functional theory

The grand potential for ions with chemical potential μi in
xternal potential V ext

i (r) is related to the Helmholtz energy
unctional for the ions through the Legendre transform:

[{ρi(r)}] = F [{ρi(r)}] +
N∑
i=1

∫
dr[V ext

i (r) − μi]ρi(r) (5)

here {ρi(r)} is a set of density distributions for all small ions, N
s the total number of ionic species, and F[{ρi(r)}] represents the
elmholtz energy functional. At equilibrium, the grand poten-

ial reaches its minimum, i.e., δΩ[{ρi(r)}]/δρi(r) = 0, and the
uler–Lagrange equation is obtained:

i − V ext
i (r) = δF [{ρi(r)}]

δρi(r)
(6)

he key problem in a density functional theory is to find an
nalytical expression for the Helmholtz energy F as a functional
f the density distributions. Without loss of generality, we may
ecompose F into four parts, i.e.:

[{ρi(r)}] = F id + F ex
hs + F ex

C + F ex
el (7)

here Fid is the ideal-gas contribution, F ex
hs the hard-sphere

ontribution, F ex
C the direct Coulomb contribution and F ex

el rep-
esents a coupling of Coulombic and hard-sphere interactions.
he ideal-gas contribution is given by the exact expression:

id = kT

N∑
i=1

∫
dr ρi(r)

[
ln(ρi(r)λ3

i ) − 1
]

(8)

here λi is the thermal de Broglie wavelength of component i
nd k is the Boltzmann constant. The direct Coulomb contribu-
i,j

o find expressions for F ex
hs and F ex

el (both are ignored in the
B theory), we use a modified fundamental measure theory
MFMT) [16] developed recently and a quadratic expansion
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in radial direction, while a periodical boundary condition is
applied in axial direction by imagining that the simulation box
is replicated infinitely along the axial direction on both sides
of the central box. In the calculation of the total energy of the
2 Y.-X. Yu et al. / Fluid Phas

f the Helmholtz energy functional, respectively. According
o MFMT [16], the hard-core Helmholtz energy functional

ex
hs [{ρi}] is given by

F ex
hs =

∫
Φhs[nα(r)] dr (10)

here β = 1/kBT, nα(r) is the weighted density and defined as
16]:

α(r) =
∑
i

∫
ρi(r

′)w(α)
i (|r′ − r|) dr′ (11)

here α= 0, 1, 2, 3, V1 and V2, denoting the index of six weight
unctions w(α)

i (r). The six weight functions are given by

(2)
i (r) = πσ2

i w
(0)
i (r) = 2πσiw

(1)
i (r) = δ

(σi
2

− r
)

(12)

(3)
i (r) = θ

(σi
2

− r
)

(13)

(2)
i (r) = 2πσiw

(1)
i (r) =

(r
r

)
δ
(σi

2
− r

)
(14)

here δ(r) is the Dirac delta function, θ(r) the Heaviside step
unction andΦhs[nα(r)] is the reduced excess Helmholtz energy
ensity due to hard-sphere repulsion, which can be expressed as

hs[nα(r)] = Φhs(S)[nα(r)] +Φhs(V )[nα(r)] (15)

here the superscripts (S) and (V) stand for contributions from
calar and vector weighted densities, respectively. The scalar
art is given by [16]:

hs(S)[nα(r)] = −n0 ln(1 − n3) + n1n2

1 − n3
+ n3

2 ln(1 − n3)

36πn2
3

+ n3
2

36πn3(1 − n3)2 (16)

nd the vector part is given by

hs(V )[nα(r)] = −nV1 · nV2

1 − n3
− n2nV2 · nV2

12πn2
3

ln(1 − n3)

− n2nV2 · nV2

12πn3(1 − n3)2 (17)

n the limit of a bulk fluid, the two vector weighted densities
V1 and nV2 vanish, and the Helmholtz free energy density
hs becomes identical to that from the Boublik–Mansoori–
arnahan–Starling–Leland (BMCSL) equation of state.

Following the previous work on the DFT of electrical double
ayer, F ex

el can be obtained by making a functional Taylor expan-
ion of the residual Helmholtz free energy functional around that
or a uniform fluid [5,11,17]:

ex
el = F ex

el [{ρb
i }] +

∫
dr

N∑
i=1

δF ex
el

δρi(r)
�ρi(r)
+
∫ ∫

dr dr′
N∑
j=1

N∑
i=1

δ2F ex
el

δρi(r)δρj(r′)
�ρi(r)�ρj(r

′) + · · ·

(18)

s
b
i
c

ilibria 256 (2007) 20–26

here {ρbi } is the set of all bulk densities and �ρi(r) = ρi(r) −
b
i . According to the definition of direct correlation functions and

eglecting all higher-order terms�C(n)el
ijk (n > 2) in Eq. (18),F ex

el
ecomes:

F ex
el = βF ex

el [{ρb
i }] −

∫
dr

N∑
i=1

�C
(1)el
i �ρi(r)

−
∫∫

dr dr′
N∑
i=1

N∑
j=1

�C
(2)el
ij (|r′ − r|)�ρi(r)�ρj(r

′)

(19)

he excess direct correlation function�C(2)el
ij (r) can be obtained

rom, for example, numerical solutions of HNC or hybridized
SA closure of the Ornstein–Zernike equation. The most pop-

lar approach is to calculate�C(2)el
ij (r) from the mean spherical

pproximation (MSA) [18,19] which yields analytical expres-
ions in reasonable accuracy. In this work, the expression of
C

(2)el
ij (r) from the MSA is adopted.

From Eqs. (5)–(19), we can obtain the Euler–Lagrange equa-
ions for the density profiles of ions around DNA:

i(r) = ρb
i exp

⎧⎨
⎩

1

kBT

[
− δF ex

hs

δρi(r)
+ μex

i,hs

]
− zie

kBT
[ψ(r) − ψb]

+
N∑
j=1

∫
dr′�C(2)el

ij (|r′ − r|)(ρj(r′) − ρb
j )

⎫⎬
⎭ (20)

he Euler–Lagrange Eq. (20) can be solved by iterative numer-
cal procedure to obtain the ion density profiles, where the
eighted densities and integrals are evaluated numerically using
Gauss quadrature method. The initial guess for the iteration

s well as the iteration procedure is similar to that described in
etail in the paper of Gonzales-Tovar et al. [20].

. Monte Carlo simulations

To test the density functional theory in a more extensive way,
onte Carlo simulations are carried out in canonical ensem-

le. A cylindrical simulation box with its axis coinciding with
he axis of DNA molecule is used in our simulation. And the

odel is the same as described in Section 2.1. The radius and
eight of the simulation box are Rbox and Hbox, respectively.

hard-wall outer boundary is imposed on the simulation box
ystem, if any ion overlaps with DNA molecule, radial outer
oundary or other ions, the total energy of this configuration
s positive infinite. Otherwise, the total energy of the system is
alculated by
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Fig. 2. Reduced mean electrostatic potential around DNA predicted by the MC,
DFT and PB equation. The electrolyte solutions contain two monovalent cations
and one monovalent anion. The diameters of cation 1, cation 2 and anion are
fixed at 0.6, 0.4 and 0.4 nm, respectively. The total bulk concentration of cations
i
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Total = −
N∑
i=1

2e2zi

εb
ln ri +

N∑
i=1

N∑
j>i

e2zizj

ε|ri − rj|MI

+
N∑
i=1

eziΦext(ri) (21)

he first term of right hand of Eq. (21) corresponds to the
olyion–ion interaction, the second term is total electrostatic
nteractions between ions in central box calculated using mini-

um image (MI) criterion and �ext(ri) in the last term is external
otential produced by the mobile ions out of central box. In the
imulation, an iterative self-consistent method is used to cor-
ect the long-range energy, and another iterative algorithm is
dopted to obtain desired bulk ionic concentration. The details
f the simulation have been given in our previous work [11].

. Results and discussion

.1. Ion density distribution and mean electrostatic
otential

An isolated model DNA molecule immersed in an electrolyte
olution composed of two species of cations and one species of
nion is considerd in this section. The radius of the hard cylin-
rical core of the DNA is R = 0.8 nm and parameter b = 0.17 nm.
n Fig. 1, the ion density profiles around model DNA molecule
redicted from the PB equation and present DFT are compar-
son with those from the canonical Monte Carlo simulations
arried out in this work. In Fig. 1, the counterions are divalent
nd have different size. Similar to the restricted primitive model,
here are significant accumulations of counterions near the sur-

ace of DNA, accompanied by a depletion of coions in the same
egion. The present DFT predicts very accurate density profiles
f counterions but underestimates the density profile of coion.
ompared with the MC data, the present DFT is more accurate

ig. 1. Ion distributions around model DNA molecule predicted by the MC, DFT
nd PB equation. The electrolyte solutions contain two divalent cations (cations
and 2) and one monovalent anion. The diameters of both cation 2 and anion are
xed at 0.4 nm, and the diameter of cation 1 and the bulk concentrations of cations
re σc1 = 0.6 nm, Cb

c1 = 0.067 mol/L, Cb
c2 = 0.133 mol/L, respectively.

1

t
o

D
i
q
fi
a
i
R
t
s
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r
t
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i
p
p
t
t
l

s fixed at 0.300 M, but ratios of concentrations of cations 1–2 are (a) 1:5, (b)
:1 and (c) 5:1.

han the nonlinear PB theory, especially for the density profiles
f counterions near the DNA surface.

Fig. 2 shows the dependence of electrostatic potential around
NA on the ratio of bulk concentration of two species of cations

n monovalent cation systems. The results from the DFT agree
uite well with those from MC simulations. The potential pro-
les predicted by the PB equation have obvious negative devi-
tions from the MC simulation data, though the corresponding
on distributions only unnoticeably deviate from the MC results.
ecall that the electrostatic potential is obtained by integrating

he ion density distributions, the tiny deviations in ion den-
ity distributions will be accumulated and become noticeable
n consequential electrostatic potentials. As shown in Fig. 2, the
atio of bulk concentration of two species of cations makes lit-
le contribution to the electrostatic potential, although it makes
strong impact on the corresponding microscopic structure of

ons around DNA. The reason for this phenomenon is that the
otential is an integral quantity, and some differences in density
rofiles are cancel each other out. Fig. 2 also indicates that at

he fixed total concentration of cations the electrostatic poten-
ials become slightly more negative when the concentration of
arger cation increases.
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Fig. 3. Reduced mean electrostatic potential around DNA predicted by the MC,
DFT and PB equation. The electrolyte solutions contain two divalent cations
and one monovalent anion. The diameters of cation 1, cation 2 and anion are
fi
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Fig. 4. Dependence ofψ(R) on the bulk concentration ratios of two monovalent
cations. The diameters of cation 1, cation 2 and anion are 0.6, 0.4 and 0.4 nm,
respectively. The solid triangle, solid line and dashed line represent the results
predicted by the MC, DFT and PB equation, respectively, for the system contain-
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xed at 0.6, 0.4 and 0.4 nm, respectively. The total bulk concentration of cations
s fixed at 0.200 M, but ratios of concentrations of cations 1–2 are: (a) 1:4, (b)
:1 and (c) 4:1.

The electrostatic potentials around DNA at three different
atios of bulk concentration of two species of divalent cations are
lotted in Fig. 3. The difference between the predictions from the
FT and those from the MC simulations is larger than the case of
onovalent cations. Comparing the three profiles presented in
ig. 3, one can see that as the bulk molar fraction of larger cation

ncreases, the absolute value of the mean electrostatic potential
ncreases slowly and the prediction from the DFT becomes more
ccurate.

We find from Fig. 3 that as the concentration of larger cation
ncreases, or the diameter of one cation becomes larger, the pre-
iction from DFT becomes accurate. Since the more content
f the larger cations, the more contributions from the excluded
olume effects, the above findings suggest that the hard-core
epulsion contribution in the present DFT should be accurate
nd deviations from the simulations should be produced by
he coupling of Columbic and hard-sphere interactions. That
ndicates the second direct correlation function used for asym-

etric electrolyte contributes mainly to the total inaccuracy of

he present DFT. It is also shown in Fig. 3 that the PB equation
s not a good theory for the divalent cation system since it even
ardly gives a qualitatively prediction of electrostatic potentials.
ig. 3 further validates that the second direct correlation func-

f
i
r

ng 0.300 mol/L cations. The open triangle, dash-dot line and dot line represent
he results predicted by the MC, DFT and PB equation, respectively, for the
ystem containing 0.150 mol/L cations.

ion from MSA closure is not accurate for highly asymmetric
lectrolyte.

The negatively charged groups on DNA surface and the sur-
ounding mobile ions form an electric double layer around DNA.
he local electrostatic potential varies along radial direction

rom R to infinity as shown Figs. 2 and 3. We now define the
otential at R as ψ(R). ψ(R) is a typical value of electrostatic
otential which reflects the extent that the surrounding small ions
creen the electrostatic field produced by polyion. As a matter of
act, ψ(R) should be negative infinity when the system is absent
f small ions. Fig. 4 presents the dependence of ψ(R) on ratio
f the bulk concentrations of two cations. As shown in this fig-
re, ψ(R) becomes more negative as the bulk mole fraction of
mall cation decreases or as the total bulk cation concentration
ecreases. This suggests that the smaller the counterion is, or
he more concentrated the bulk electrolyte solution is, the more
he capacity of screening external electrostatic potential.

.2. Osmotic coefficient

When the present DFT is combined with a cell model, it can
e used to predict the osmotic coefficient of DNA–electrolyte
olutions. The cell model osmotic coefficient can be calculated
rom the equation [12]:

=
∑
ρi(RC)∑
ρi

(22)

here ρi(RC) is the number density of ionic species i at the cell
oundary, and ρi is the corresponding average number density
n the solution.
Theoretical and experimental osmotic coefficients for salt-
ree DNA solution with monovalent counterion are compared
n Fig. 5. In the calculation, R = 0.8 nm and b = 0.17 nm, cor-
esponding to double-stranded DNA in B form [13], and the
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ig. 5. The osmotic coefficient of salt-free DNA solution as a function of the
ounterion concentration (or DNA concentration) at 298.15 K. The symbols,
ashed and solid lines represent the results of experiment [13], PB- and DFT-
ell models.

ounterion diameter σC = 0.4 nm, corresponding to Na+. The
B-cell model and the present DFT-cell model have almost the
ame results in this case, overestimating the osmotic coefficient.
laul et al. [15] pointed out the possible reasons for this discrep-
ncy of PB-cell model is the neglect of the ion–ion correlations or
pecific interactions between the macroion and the counterions.
owever the DFT, which has included the ion–ion correlations,

lso gives too high osmotic pressure. In order to clarify this
atter further, we calculate the osmotic coefficient of salt-free

olystyrenesulfonate solution with mono- and trivalent counte-
ions only and the results are plotted in Fig. 6. In Fig. 6, the
olyion parameters are R = 0.6 nm and b = 0.252 nm, the diam-
ters of both counterions are σC = 0.4 nm, and the equivalent
raction of the monovalent ions N̄1 is defined as

¯ 1 = ρ1

3ρ2 + ρ1
(23)

here ρ1 and ρ2 are, respectively, the average number densities

f mono- and trivalent counterions in the polyion free volume of
he cell. In this case the ion–ion correlation is strong, whereas we
an see from Fig. 6 that DFT-cell model gives reasonable results
or the osmotic coefficient. This indicates that the neglect of the

ig. 6. The osmotic coefficient as a function of the equivalent fraction N̄1

or aqueous polystyrenesulfonate solution with mono- and trivalent counteri-
ns only at Cp = 0.001 mono mol/L and T = 298 K. Solid and opened triangles,
ashed and solid lines represent the results from the experiment [22], Monte
arlo simulation [14], PB- and DFT-cell models, respectively.

N

R

[
[

[
[

[

[
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on–ion correlation is not the reason for the overestimation of
smotic coefficients for salt-free DNA solution, although includ-
ng the ion–ion correlation may lower φ for the systems with
ivalent or trivalent counterions. Some additional specific inter-
ctions between DNA and the counterions, for example, binding
f counterions to DNA, should be considered. In addition, the
mmediate neighborhood of DNA may exhibit a considerably
ower dielectric constant than the bulk water, which leads to a
tronger interaction between DNA and counterions [15,21].

. Conclusions

In this paper, we have established a density functional theory
o describe the ion distributions and mean electrostatic potentials
round isolated DNA in mixed-size counterion solutions. Exten-
ive comparison with the Monte Carlo simulation data suggest
hat the proposed DFT can be successfully used to predict the
tructures and the electrostatic potentials of ions in the vicin-
ty of the surface of DNA and is superior to the well-known
oisson–Boltzmann theory. When the DFT is combined with

he cell model, it predicts too high osmotic coefficient for the
alt-free DNA solutions. A semi-quantitative fit of osmotic coef-
cient can be achieved by decreasing the parameter b. The
mall but significant discrepancy between the cell model and the
xperimental values may be traced back to the neglect of spe-
ific interactions between DNA and the counterions. A locally
arying dielectric constant may lead to a better result for the
stimation of the osmotic coefficient for DNA–electrolyte solu-
ions.
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