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Density Functional Theory Study on the Structure and Capillary Phase Transition of a
Polymer Melt in a Slitlike Pore: Effect of Attraction

|. Introduction

Understanding the structure and thermodynamic properties
of confined polymeric fluids is very important for many
industrial applications such as surface coating, lubrication, and .
colloidal stability! The interplay of the intermolecular interac-
tion, chain connectivity, and the forces arising from solid
surfaces makes the structure and phase behavior of confine(ﬁs
polymeric fluids interesting but difficult to predict. In principle,
molecular simulationd polymer integral-equation approackes,
self-consistent-field theorié<’, and density functional theories
(DFTsY can be used to investigate the properties of polymeric
fluids under inhomogeneous conditions. With explicit consid-
eration of surface and intermolecular interactions, the density
functional theories are very promising as a method for exploring
the rich equilibrium phase behavior of confined polymeric fluid.

The key problem of a density functional theory is to develop
an expression for the grand potential as a functional of density
profiles? There are two complementary ways to derive the grand
potential: one is based on density expansion, and the other is
based on weighted densities. The first way was initially
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A density functional theory is proposed to investigate the effects of polymer moronwromer and
monomet-wall attractions on the density profile, chain configuration, and equilibrium capillary phase transition
of a freely jointed multi-Yukawa fluid confined in a slitlike pore. The excess Helmholtz energy functional is
constructed by using the modified fundamental measure theory, Wertheim’s first-order thermodynamic
perturbation theory, and Rosenfeld’s perturbative method, in which the bulk radial distribution function and
direct correlation function of hard-core multi-Yukawa monomers are obtained from the first-order mean
spherical approximation. Comparisons of density profiles and bond orientation correlation functions of
inhomogeneous chain fluids predicted from the present theory with the simulation data show that the present
theory is very accurate, superior to the previous theory. The present theory predicts that the polymer monomer
monomer attraction lowers the strength of oscillations for density profiles and bond orientation correlation
functions and makes the excess adsorption more negative. It is interesting to find that the equilibrium capillary
phase transition of the polymeric fluid in the hard slitlike pore occurs at a higher chemical potential than in
bulk condition, but as the attraction of the pore wall is increased sufficiently, the chemical potential for
equilibrium capillary phase transition becomes lower than that for bulk vdmprid equilibrium.

a Heaviside step function is used for the repulsive weighting
function and a van der Waals approximation for the attractions.
Unfortunately, the latter gives a rather poor representation of
the equation of state. It should be noticeable that, in the
implementation of a DFT for square-well chain fluids, Ye et
alt617 used a Heaviside step function for both repulsive and
tractive weighting functions. In KR theory for chain fluids,
ertheim’s first-order thermodynamic perturbation thédig
applied to represent the equation of state in the bulk limit. There
exists inconvenient numerical implementation of KR thebry;
that is, it requires the cavity correlation function of inhomoge-
neous hard-sphere fluid. The theory proposed by Yu ané’Wu
overcomes this shortcoming, using a radical distribution function
represented by the weighted densities from the fundamental
measure theory (FMT321 Their theory gives fairly accurate
density profiles and surface excess of confined HSC mixtires,
and the intra- and intermolecular radical distribution functions
of bulk chain fluids?223By including the dispersion interaction
via mean-field approximation, their theory has been successfully
extended to study the structures, adsorptions, wetting, layering,

introduced by Chandler, McCoy, and Singers (CMISP and capillary phase transitions of inhomogeneous polymer

Recently, more efficient methodologies have been proposed an
successfully applied to the prediction of the structures, adsorp-
tions, and surface tensions of freely jointed hard-sphere chain
(HSC) fluids near hard surfacésThe weighted-density ap-
proach for chain fluids was first proposed by Woodwa=hd

elts24-26 However, as we have pointed out for atomic fluid,
he mean-field approximation is a poor theory for the Helmholtz
energy functional due to dispersion interactfér?®

In this paper, the DFT of Yu and WRiis extended to
polymeric fluids with dispersion force by introducing a new

by Kierlik and Rosinberg (KR} Yethiraj and Woodwart radial distribution function of polymer monomers in terms of

presented a density functional theory that conbines an exac
expression for the free energy of non-interacting chains, and
Patra and Yethird} separated the Helmholtz free energy

functional into a repulsive and an attractive contribution in which

tthe weighted densities from the FMT and making a functional
Taylor expansion proposed by Rosenféld.he polymer melt

is represented by a freely jointed hard-core multi-Yukawa chain
fluid which has proven to be a good approximation for alk&fes.
The bulk direct correlation function from the first-order mean

* To whom correspondence should be addressed. E-mail: yangxyu@ Sp_h(:-'rical approximation (FMSAis chosen for the_ implemen-
mail.tsinghua.edu.cn. tation of the excess Helmholtz energy functional due to
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dispersion force. It has been applied to describe the structureswhere R = dr; dr,
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... Ory represents a set of differential

adsorptions, and capillary phase transitions of the hard-corevolumes for the polymer chain & segmentsyy is the polymer

multi-Yukawa chain fluids in slitlike pores. Compared with
previous theoried-3*for confined polymeric fluids, the method

chemical potential, and/{;(R) denotes the total external
potential on the chain. The total potential on each chain molecule

reported here has the advantages of simplicity, numerical is equal to the sum of the potential energy on its individual

efficiency, and good accuracy. In the following section, we
present the DFT for the hard-core multi-Yukawa chain fluid.

segments, that i8/(R) = M, o2(ry).
The Helmholtz energy function& can be formally expressed

We present and discuss the numerical results for the densityas an ideal-gas contributioRy plus an excess terrfie, that
profiles, bond orientation correlations, adsorption isotherms, and accounts for intra- and intermolecular interactions other than

capillary phase transitions in section Ill, and we end with some
conclusions in section V.

Il. Model and Theory

A. Molecular Model. We study the structure and equilibrium
phase transition of an inhomogeneous chain fluid which
incorporates the relevant features of polymeric materials:

excluded volume of segments, chain connectivity, and attractive
and repulsive interactions between monomers. The chains are

modeled as a pearl necklace of freely jointed hard-core multi-
Yukawa spheres with diameter The bonding potentiaVy(R)
is given by

M-1(|riy — 1l
expl-V(R)KT] =

— O—)

1)
476°
whereR = {rq,rp,...ru} is a set of coordinates describing the
position of M segments on each chaif(r) is the Dirac delta
function, k is the Boltzmann constant, anfdis the absolute
temperature. The monomeric units interact via a Yukawa
potential with multiple tails. This segmensegment interaction
u’(r) is represented as

00

m ¢, exp[—4,(r — o0)/o]

r<o
u'(r) =

)

r=o

rlo

whereo is the diameter of segmentsjs the center-to-center
distance between two interacting segmentss the number of
tails, ¢, and A; represent, respectively, the potential energy at
contact and the screening length of Yukawa tail

We model the pore as a slit formed by two parallel attractive
walls separated by a distancetéf+ o. Each monomer on the
chains interacts with the walls via a Yukawa-type potential given

by

ext/oy W(Z)+W(H—Z) O<z=<H
w@= {oo otherwise @)
with
W(2) = —¢,, exp(4,,Z/o) 4)

wherez is the normal distance from the left wallyy and ey

the bonding potential

F=Fq4+F (6)

whereFq is the ideal-gas contribution given exactly by
Fig = KT [ dRoy(R)[IN py(R) — 1]+ f'dRoy(R) vb(Rzn

To derive the excess Helmholtz energy functional due to both
intra- and intermolecular interactions, we decompbBsginto
three parts

Fex= Fndp(N] + Feilp(r)] + Faidp(r)] (8)

where p(r) represents the total segment density profile. The
subscripts hs, ch, and dis denote, respectively, contributions to
the excess Helmholtz energy functional due to the hard-core
repulsion, chain formation, and long-ranged dispersive forces.
In writing eq 8, we assume that the excess Helmholtz energy
functional can be effectively accounted for by using only
segment densities. The total segment dengityis given by a
sum of that for individual segments

M M

)= ) ps() = Zde o(r —r) p(R) 9)

where psi(r) stands for the local density of segmeéntn the
chain.

The excess Helmholtz energy functional due to the hard-core
repulsion is well described by the modified fundamental measure
theory (MFMT)?2! that is,

Fs= KT [dr{®"*®[n (N] + "V, (0]}  (10)
where the superscripts (S) and (V) represent the contributions
from scalar- and vector-weighted densities, respectively. The
scalar Helmholtz energy density is given by

are, respectively, the interaction range and strength parameters

between the monomers and the wall. Increasipgthe wall
attracts the fluid and eventually the fluid will wet the wall.
B. Density Functional Theory. For the model system

considered above, the density functional theory can be obtained

by extending our previous thedfto the hard-sphere chain
(HSC) fluid. Generally, the grand potential functior@l is
related to the Helmholtz energy functiorfalvia a Legendre
transform

Q = Floy(R)] + [ dRoy(RIVH'(R) — syl (5)

3
n,n n,>In(1 —n
®"Cn (] = —nyIn(L — ny) + = 2 > )
1-n, 367,
3
n
—22 (11)
367n4(1 — ny)
and the vector part is expressed by
Ny;°N NNy, Ny, IN(L — N
@hsw)[na(r)] — _ vifhve  ThRlvaTlve (2 3) _
1-n, 1270,
n,Ny,°*N
2''Vv2 T2 (12)

127n,(1 — ny)?

In the above equations, the weighted densitigs) are defined
as
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n(r) = fdr p(r’) W' —r) (13) o) = o°(L =4+ 42— e™)

(26)

wherea =0, 1, 2, 3,V1, andV2 denote the index of six weight
functionsw®(r). The six weight functions are independent of with &
n

= (/6 " iph=0,1,2,3 A=1-
the density profiles, which are given by (7/6)2 puoy (Superscrip 1,2, 3) an

&s. It should be mentioned that another expressiongfd(o)
derived by Tang et &€ results in the same values gf)(0) as
w(r) = 76*WO(r) = 27oW(r) = 8(0l2 — 1) (14) the above equations at bulk limit. We prefer eqs-26 because
they are easy to be extended to inhomogeneous fluid in terms
W) =002 -r) (15) of the FMT. Using the rule proposed previouslye obtain
the following expression fogM(o,n,)

w(r) = 220W™M(r) = (r/r)o(ol2 — 1) (16)

m
(1) — 2
where®(r) is the Heaviside step function. g-(ony) = £ peilB.n,)] (27)
According to our previous work, the Helmholtz energy
functional due to chain formation under inhomogeneous condi- 27nCP(AiN,)
tions can be obtained by extending the first-order thermody- B(A;,n,) =1+ (28)

namic perturbation theoty [1 = ng — 27meEP(4;,0,)]

_ P.(A.,n,) = @-(A4)Py(n,) + ¢(A)P(n (29)
ﬂFchleMfdrnOCmg(O‘,na (17) n\" i o 27570 0\ o EANGIVARNE a)
Po(ny) =1+ 3n/(1—ny) (30)
wheref = 1KT, { = 1 — nyny/ny? is an inhomogeneity factor,
andg(o,ng) is the radial distribution function of hard-core multi- P.,(n) =0+ n,Co?l[4(1 — ny)] (31)
Yukawa monomers. To obtain a more accurate radial distribution
function g(o,n,) for multi-Yukawa monomers, the following Finally, the dispersion part of the excess Helmholtz energy
SEXP approximation is employed: functionalFgis is approximated by a functional Taylor expansion
glo:n,) = d"(ony) expigon,)] (18) Fas = . dr drACR(r = 1) o) o) (32)

whereg"yo,n,) is the radial distribution function of hard-sphere \\here ACﬁ’Yb(r) - Cﬁ{b(r) _ Cff)b(r) and Cﬁ{b(r) and Cff)b(r)
fluid andg®(o,ne,) is the first-order approximation of the radial  re the bulk second-order direct correlation functions for hard-
distribution function of multi-Yukawa spherego,n,) has core multi-Yukawa fluid and hard-sphere fluid, respectively.
been obtained before and is giver'dy In this work, AC@¥(r) is obtained from the FMSA solution for

5 the corresponding hard-core multi-Yukawa fluid in the bulk
hs _ 1 n,o¢ nyo’t 19 case.36
g{on,) = (1—ny) 41— n3)2 72(1— n3)3 (19) Minimization of the grand potential with respect to the density

profile pm(R) yields the following EulerLagrange equation:

pu(R) = expPBuy — BV,(R) — BVi(R) — BAR)]  (33)

where A(R) = 0Fe/0pm(R). Because the excess Helmholtz
energy functional used in this work depends only on the segment
m density profilep(r), A(R) can be simplified to
g%0) =  BelBA)* (20) OF, M OF,,
. AR) = = (34)
opw(R)  =10p(ry)
Substituting eq 34 into eq 33 yields
(21) M
pm(R) = explBuy — BVH(R) — B ) wi(r)]  (35)
=

In this work, the expression fa®)(o,n,) is modified from
the solution of the FMSA for hard-core multi-Yukawa mixtures.
From Tang’s worké® we can obtain the following expression
for g(o,n,) at bulk limit:

where

27P (A)p

2 = el
) =1 A 2P el

Po(di) = @5(4)Py + ¢1(4)P, (22) . .
wherey(r;) is related to the excess Helmholtz energy functional
et
Py =1+ 3&/A (23) Fex and the external potentiaf*(r;) by
i) = OF,/op(r) + o (r) (36)

P, = 0 + 3&,0°/(2A) (24) . o . . . .
Equation 35 indicates that as in a typical self-consistent-field
theory, the segment density is determined by the chain con-

02(1 —A— e*'ii) nectivity and an effective external potentiglr;). Because eq
p1(h) = T (25) 35 involves only the total segment density, the self-consistent
i

field is identical for all segments.
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Figure 1. Reduced density profiles of one-Yukawa 10-mets € Figure 2. Same as Figure 1 but wiff = 2.0.
2.5) in a slitlike porel = 100, Aw = 2.5) at a reduced temperature of
T* = 5.0 and an average packing fractionsgf = 0.2 for the wall o3l @)

energy parameters: (a) = 0; (b) ew/e1 = 1.0. The symbols and solid
curves represent the results from the CMC simulations of Goel%t al.
and the present DFT, respectively.

From egs 7 and 35, we can obtain the total segment density
profile

M M
p(r) = de o(r — ;) exp[Buy — BVR(R) — ﬁZ‘/’i("i)] 02F NSPPTL =806
i= = . g T
(37) 01} ol
For a polymer confined in a slitlike pore, the segment density 0.0 _ \ :
distribution varies only in thez-direction. In this case, the 0 1 2 3

multidimensional integral in eq 37 can be simply factored as Figure 3. Reduced density profiles of one-Yukawa 20-mets £
2.5) in a slitlike poreld = 100, Aw = 2.5) at a reduced temperature of

_ _ i i T* = 5.0 and an average packing fractionsgf, = 0.1 for the wall
psi(2) = expBuy — f1i(2]GL(2 Gr(2) (38) energy parameters: (a)y = 0; (b) ew/es = 1.0. The symbols, dashed,

and solid curves represent the results from the CMC simulations, theory

whereG‘L(z) is determined from the recurrence relation of Goel et al2 and the present DFT, respectively.
i 0c—1Z —2) - [
L@ = [[dz expl-py @)1=, —GL @) (39) ) (@

fori =2, ...,Mwith Gi(z) = 1. Because the external potential
is the same for all the monomers on the chain, we have the

—_
T

symmetric relation “s 0. . . . L \
, , < )
G "2 =G (40) 2
The chemical potential for solving the segment density
profiles is obtained from eq 38 by switching off the external Lr
potential VE(R). The segment density profiles are solved
using the Picard-type iteration method through egqs48 The oO . L . L 3

iteration repeats until the relative percentage change is smaller zlo
than 0.01% at all points. The numerical integrations are figyre 4. Reduced density profiles of one-Yukawa 5-meks= 2.5)

performed using the trapezoidal rule with the step #ize= in a slitlike pore H = 100, Aw = 2.5) at a reduced temperature f

0.005. = 5.0 and an average packing fractiorgf = 0.4 for the wall energy
parameters: (2w = 0; (b) ew/e1 = 1.0. The symbols and solid curves

I1l. Results and Discussion represent the results from the CMC simulations of Goel &t ahd

) ] the present DFT, respectively.
A. Density Profiles. As a test of our DFT, we compare the

density profiles predicted from the present DFT with that from wherep,, is the average number density of segment given by
the canonical ensemble Monte Carlo (CMC) simulations. For

direct comparison, the bulk density in the DFT calculations is H

adjusted such that the two approaches yield the same average Pav = fo p(2) dzH (41)
segment density in the pore. Figuresdlpresent the theoretical

predictions for hard-core one-Yukawa 5-mers, 10-mers, and 20-and the reduced temperature is definedlas= kT/e;. From
mers, along with the CMC simulation resdfsinder various Figures -4, one can see that the behavior of the density profiles
conditions. For each set of density and temperature, two wall of hard-core one-Yukawa chains confined between hard walls
energy parametergyw/e; = 0 and 1.0, are considered. Here, (ew = 0) is similar to that of the hard-sphere chain fluid. The
the average packing fractiopy is defined asjay = 7pa0%/6, density profiles are governed by the competition between the
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configurational and packing entropic effects. The depletion of p,. ,(z2) = expBuy — Byi(2) —

density profiles near the wall is shown at low densities, while ’ 0o — 12— Z1) _, '

the opposite trend is found at high densities. In the case of ﬁwi(z')]TG'L(z) G'F:rl(z') (44)
attractive walls éw/e; = 1.0), there is a net enhancement of

segment density near the surface compared to hard walls at therpey the bond orientation correlation function is easily evalu-
same reduced temperature. The present DFT is in excellent

. ) . " ated from
agreement with the simulation data under all conditions. In
particular, the density at contact predicted from the present DFT 1 o o
is very close to the simulation value. 1 M_lfldypi,i+1(z - Ey,Z+ EV)VZ
Figures 1 and 2 depict the density profiles of one-Yukawa [Gosw = Z (45)
10-mers in the slitlike pores at reduced temperatures*of = 1 o o
5.0 and 2.0, respectively. At lower reduced temperatilite= fldypi,i+1(z - Ey,z + Ey)

2.0), the fluid-fluid attraction is stronger and the tendency

toward depletion of the region near the wall is more pronounced. wherey = cosw. From the definition of the bond orientation
In addition, Figures +4 show that all the densities near the  crelation function, we know thai(z) = —0.5 denotes that
surfaces for one-Yukawa chains are lower than those for the yonds are parallel to the solid wall(z) = 0 corresponds to
hard-sphere chain fluids at the same chain length, density, a”drandomly oriented bonds, arsfz) = 1.0 denotes that bonds
wall potential parameters. This phenomenon is similar to that gre normal to the solid walls.

we found from the hard-core repulsive and attractive Yukawa |n Figure 5, we compare the bond orientation correlation
fluids before?® All of these indicate that the intermolecular functions predicted from the present DFT with that from the
attraction and chain formation cause a depletion of chain CMC simulations for hard-core one-Yukawa 10-mers in a hard
segments near a wall, while the intermolecular repulsion and slitlike pore H = 100, ey = 0) at reduced temperatuii¢ =
packing effect lead to an enhancement of chain segments neaso and average packing fractio@, = 0.1 and 0.4. In this limit

the wall. of reduced temperature, the hard-core one-Yukawa chain fluid
The comparisons of the predictions from the present DFT iS reduced to HSC fluid. The agreements between the present
with that from the theory of Goel et &t.for one-Yukawa 20- ~ DFT predictions and the CMC simulation data are very good.

mers are shown in Figure 3. The present DFT gives very Figure 5 shows that the bond anisotropy persists only half or
accurate density profiles near the wall, while the theory of Goel ©ne segment diameter at low density and persists over three or
et al33 underestimates the layering of the chain at the surface four segment diameters at high density, just like the density
under these conditions. This deficiency in their theory can be iNhomogeneities in the pore. _

improved by a proper choice of bridge function. An important The e_ffects_ of fIL_ud—qulgl _and fluid—wall attractions on the
difference between two theories is that the intramolecular POnd orientations in a slitlike poréi(= 100, 4w = 1.8) for
interactionVi(R) in the inhomogeneous fluid is obtained by ~WO-Yukawa 20-mersiy = 2.8647,1, = 13.5485.cple1 = —
carrying out Monte Carlo simulation of a single chain in the 1.4466) are presented in Figures 6 and 7 for bulk packing

theory of Goel et al®3 whereas intramolecular correlations and ::ﬁig(\j\?an:n:n%riggdrﬁﬁi’ trﬁesﬁ_ee%t::’aerlg; Jlgntg'ss C(;atzi,tig;evxt/\gi% -h

segment density profiles are obtained in a self-consistent manner, . . P P

; . is repulsive near the contact distance and becomes attractive at

in the present theory. The advantage of the present DFT is that . . . ;

it uses the analytical direct correlation function from the FMSA long enough distance. Nevertheless, the attractive dispersion
. i . . — force is dominant in this case. Figures 6 and 7 suggest that the

and avoids solving the nonlinear PRISM integral equation

ically in th lculati Thi kes th ¢ DFT chain segments are aligned parallel to the solid surface in its
numercally in the caiculation. ThiS makes the presen vicinity. The bond anisotropy of the two-Yukawa 20-mers
easier to implement.

persists for a short distance at low density, and the strong
B. Chain Conformations. The present DFT can provide the  oscillations of the bond orientation correlation function are
local information about the orientation of each bond along the observed at high density. When the intermolecular attraction
chain. The orientation of each chain segment in the inhomo- between chain segments appears, the oscillations of the bond
geneous condition is generally presented by the bond orientationorientation correlation function become less pronounced. On

correlation functiors(z) defined as the other hand, the introduction of the fluigvall attraction
enhances the oscillations. The preferential normal to the wall
s(2) = [3[dosw— 1]/2 (42) alignment (peak to profiles as shown in Figure 7) is closely

related to the segment layering. It reflects the necessity for bonds
wheres is the bond anisotropy factog is the angle between  having their middlepoints in this region to connect segments in

the bond (vector joining the centers of adjacent segmnieasl the first and second layer, and therefore to have an orientation
i + 1 on a chain) and the axis (normal to the wall)z is the more or less normal to the solid surface.

coordinate of the bond middle point, afgi-Cstands for the C. Adsorption and Capillary Phase Equilibrium. We now
average over all bonds and configurations. For the model @PPly the present DFT to the multi-Yukawa chain fluids with a
considered in this work, it is easy to see thatosw = z; — special attention given to the effect of fluifluid and fluid—

z. To evaluate this quantity, we need a set of intramolecular wgl_l attractions on adsorption and capillary ph_ase_transition in
distribution functionsp+1(z.2) defined by slitlike pores. Figure 8 compares the adsorption isotherms of

hard-sphere, one-Yukawd,(= 1.8) and two-Yukawali =
1.8,12=4.0,e2le; = — 1.0) 20-mers confined in a hard slitlike
pria(rr) = [dRO(r — 1) 6(r" = risy) pu(R)  (43) pore at a reduced temperatureTsf = 3.5. Here, for the one-
Yukawa 20-mers, the monomers interact with each other by an
From eq 43 and the EuleLagrange equation (eq 35), we can attractive Yukawa potential, while, for the two-Yukawa 20-mers,
obtain the factorization expression @fi+1(z,2) the potential between the monomers is zero at contact and
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Figure 5. Comparison of bond orientation correlation function
predicted from the present DFT with those from CMC simulations for
one-Yukawa 10-mers in a slitlike porel & 100, ew = 0) at a reduced
temperature off* = 0 and an average packing fractionmf, = 0.1

and 0.4. The symbols and solid curves represent the results from the
CMC simulations of Goel et & and the present DFT, respectively.

02
01}
00}
& -01F
)
02
sl &, =0; HSC
‘ ---- g,=0;T*=2.0
04k /0 €,/6, =2.0; T* =2.0
-0.5 1 1 1 1 1
00 05 10 15 20 25 30
z/o

Figure 6. Bond orientation correlation function predicted from the
present DFT for two-Yukawa 20-meréi(= 2.8647,4, = 13.5485,
ele; = —1.4466) confined in a slitlike poréH(= 100, Aw = 1.8) at a
bulk packing fraction ofy, = 0.2 and various values of temperatures
and wall energy parameters.
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Figure 7. Same as Figure 6 but with, = 0.35.

becomes attractive at long distance. Overall, the attractive force
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Figure 8. Adsorption isotherms predicted from the present DFT for

hard-sphere, one-Yukawa,(= 1.8) and two-Yukawai; = 1.8,1, =

4.0, e2le; = — 1.0) 20-mers in a slitlike poreegy = 0, H = 100) at a

reduced temperature ©f = 3.5. Dash-dotted, dashed, and solid curves

represent the results for hard-sphere, one-Yukawa and two-Yukawa

chains, respectively.
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Figure 9. The predicted results of (a) the average density and (b)
reduced grand potential as a function of the chemical potential for two-
Yukawa 4-mersA; = 2.673;1, = 4.408;¢e5/¢; = —3.955/4.755) in a
hard slitlike pore éw = 0, H = 50) at a reduced temperature Bf =

0.6. The solid curves represent the thermodynamically stable states,
and the dashed curves denote the metastable states.

enough density. This can be well understood by the competition
between chain configurational and packing entropic effects. It
is interesting to see that the attraction between chain segments
substantially decreases the excess adsorptdaf chain fluids
in the hard slitlike pore. Because the temperature in this figure
is higher than the critical points of both one- and two-Yukawa
chain fluids, no capillary condensation is observed.

Figure 9 depicts the adsorption/desorption isotherms and
reduced grand potential of two-Yukawa 4-mets= 2.673,1,
= 4.408,¢,/e; = 3.955/4.755) confined in a hard slitlike pore
(H = 50, ew = 0) at a reduced temperature of = 0.6. Here,

between the two-Yukawa monomers is smaller than that betweenthe reduced grand potential is defined®is = Qo2/AkT, where
one-Yukawa monomers. The excess adsorption is defined asa is the surface area. The capillary condensation phenomenon

r*= ["[0@ — py dz

From Figure 8, one can see that, for polymeric fluids confined
in a hard slitlike porel = 100, ey = 0), the excess adsorption
I'®x is negative at low density and becomes positive at high

(46)

takes place and can be clearly observed in the figure. The solid
vertical line connecting points A and B in Figure 9a represents
the equilibrium capillary phase transition, corresponding to the
crossover point C in Figure 9b. This indicates that, at equilibrium
phase transition in the pore, both the chemical potential and
grand potential in the liquidlike phase are equal to that in the
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Figure 10. Phase diagram predicted from the present DFT for the Figure 11. Same as Figure 10 but for the wall energy parametér

two-Yukawa 4-mersA; = 2.673;12 = 4.408;e2/e; = —3.955/4.755) e =1.0.

confined in the hard slitlike poresy = 0): (a) T* —p;,0° projections; .

(b) w/kKT—T* projections. The solid, dashed, and dasiotted curves IV. Conclusions

represent the results for the pore widih= 5o, the pore widthH = A density functional theory is presented to investigate the

150, and the bulk case, respectively. . . . . L .
density profiles, chain conformations, and equilibrium capillary

. . . ) . ... phase transition of freely jointed hard-core multi-Yukawa chain

gaslike phase. For the polymeric fluid confined in a hard slitlike fluids confined in slitlike pores, including the effects of fluid

pore, no layering tr_ansﬁmn Ca_n b'_e found. . fluid and fluid—wall attractions. The excess Helmholtz energy
From the adsorption/desorption isotherms and grand potential,nctional is constructed by using the modified fundamental
presented in Figure 9, we can determine the coexistence densityaasyre theory of Yu and Wu for hard-core contribution, the
for the equilibrium capillary phase transition. Figures 10 and fjrst-order thermodynamic perturbation theory for chain forma-
11 depict the phase diagrams of confined and bulk two-Yukawa tjon, and Rosenfeld’s perturbative method for dispersion
4-mers {1 = 2.673,4, = 4.408,€5/e; = 3.955/4.755) at wall  contribution. The required radial distribution function and bulk
parameters ofw = 1.8 andew/e; = 0 and 1.0. Here, the average  second-order direct correlation function for multi-Yukawa
density over the entire pore is calculated frpf = paH/(H monomers are obtained from the analytical solution of the
+ 0). In both hard and attractive pores, the effect of the pore Ornstein-Zernike integral equation with the first-order mean
width on theT* —p;, 0 diagram is similar; that is, the confine-  spherical approximation. The obtained theory avoids the nu-
ment lowers the critical temperature and the lowering is larger merical solution of the integral equation and is easy to
for narrower pores. The average liquidlike density of the implement. Comparisons of the density profiles predicted from
confined chain fluid is always lower than that in the bulk phase. the present density functional theory with that from the canonical
On the other hand, the density of the dilute vaporlike phase is Monte Carlo simulations show that the present theory is quite
less affected by the confinement: it may be lower or higher accurate. In contrast, the theory of Goel et33alalways
than the bulk vapor density (see Figure 10a). However, there isunderestimates the density profiles of one-Yukawa chain fluids
a qualitative difference between hard and attractive pores onin the slitlike pores. Both theory and simulation indicate that
u/KT—T* diagrams. Figure 10b shows that the equilibrium the intermolecular attraction and chain formation cause a
capillary phase transition of the chain fluid in the hard slitike depletion of chain segments near a solid surface, while the
pore occurs at a higher chemical potential than in bulk condition. intermolecular repulsive and packing effect lead to an enhance-
As the attraction of the pore wall is increased, the chemical ment of chain segments near a solid surface.
potential for equilibrium capillary phase transition of the The chain configurations of polymer melts in the slitlike pores
confined chain fluid becomes lower than that for bulk vapor  are investigated through the bond orientation correlation func-
liquid equilibrium, as shown in Figure 11b. Because we focus tions. When the present density functional theory is applied to
on the equilibrium capillary phase transition, there is no layering the calculation of the bond orientation correlation function for
transition at the wall parameters considered here. If the wall hard-sphere chain fluid, an excellent agreement between the
energy parametefy is large enough, the layering transition of  predictions and simulation data is achieved. The predictions from
a multi-Yukawa chain fluid in a pore will occiéf. the present theory show that the chain segments are aligned
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parallel to the solid surface in its vicinity. The bond anisotropy
of two-Yukawa 10-mers persists over a short distance (half to
one segment diameter), and the strong oscillations of the bond,gz=4
orientation correlation function are observed at high density.

The effects of fluid-fluid and fluid—wall attractions on the bond

orientation correlation function are similar to that on the

corresponding density profiles.

When a polymeric fluid is confined in a slitlike pore, the
critical temperature of capillary phase transition is always

J. Phys. Chem. B, Vol. 110, No. 29, 20064425
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liquidlike density over the whole pore is always lower than that
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is less affected by the confinement. The chemical potential for
the equilibrium capillary phase transition of chain fluids confined

in a hard slitlike poredyw = 0) is higher than that for the bulk

vapor-liquid equilibrium, but if the attraction of the pore wall
is strong enough, it becomes lower than that in the bulk case.
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