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A density functional theory is proposed to investigate the effects of polymer monomer-monomer and
monomer-wall attractions on the density profile, chain configuration, and equilibrium capillary phase transition
of a freely jointed multi-Yukawa fluid confined in a slitlike pore. The excess Helmholtz energy functional is
constructed by using the modified fundamental measure theory, Wertheim’s first-order thermodynamic
perturbation theory, and Rosenfeld’s perturbative method, in which the bulk radial distribution function and
direct correlation function of hard-core multi-Yukawa monomers are obtained from the first-order mean
spherical approximation. Comparisons of density profiles and bond orientation correlation functions of
inhomogeneous chain fluids predicted from the present theory with the simulation data show that the present
theory is very accurate, superior to the previous theory. The present theory predicts that the polymer monomer-
monomer attraction lowers the strength of oscillations for density profiles and bond orientation correlation
functions and makes the excess adsorption more negative. It is interesting to find that the equilibrium capillary
phase transition of the polymeric fluid in the hard slitlike pore occurs at a higher chemical potential than in
bulk condition, but as the attraction of the pore wall is increased sufficiently, the chemical potential for
equilibrium capillary phase transition becomes lower than that for bulk vapor-liquid equilibrium.

I. Introduction

Understanding the structure and thermodynamic properties
of confined polymeric fluids is very important for many
industrial applications such as surface coating, lubrication, and
colloidal stability.1 The interplay of the intermolecular interac-
tion, chain connectivity, and the forces arising from solid
surfaces makes the structure and phase behavior of confined
polymeric fluids interesting but difficult to predict. In principle,
molecular simulations,2 polymer integral-equation approaches,3

self-consistent-field theories,4,5 and density functional theories
(DFTs)6 can be used to investigate the properties of polymeric
fluids under inhomogeneous conditions. With explicit consid-
eration of surface and intermolecular interactions, the density
functional theories are very promising as a method for exploring
the rich equilibrium phase behavior of confined polymeric fluid.

The key problem of a density functional theory is to develop
an expression for the grand potential as a functional of density
profiles.7 There are two complementary ways to derive the grand
potential: one is based on density expansion, and the other is
based on weighted densities. The first way was initially
introduced by Chandler, McCoy, and Singers (CMS).8-10

Recently, more efficient methodologies have been proposed and
successfully applied to the prediction of the structures, adsorp-
tions, and surface tensions of freely jointed hard-sphere chain
(HSC) fluids near hard surfaces.11 The weighted-density ap-
proach for chain fluids was first proposed by Woodward12 and
by Kierlik and Rosinberg (KR).13 Yethiraj and Woodward14

presented a density functional theory that conbines an exact
expression for the free energy of non-interacting chains, and
Patra and Yethiraj15 separated the Helmholtz free energy
functional into a repulsive and an attractive contribution in which

a Heaviside step function is used for the repulsive weighting
function and a van der Waals approximation for the attractions.
Unfortunately, the latter gives a rather poor representation of
the equation of state. It should be noticeable that, in the
implementation of a DFT for square-well chain fluids, Ye et
al.16,17 used a Heaviside step function for both repulsive and
attractive weighting functions. In KR theory for chain fluids,
Wertheim’s first-order thermodynamic perturbation theory18 is
applied to represent the equation of state in the bulk limit. There
exists inconvenient numerical implementation of KR theory;13

that is, it requires the cavity correlation function of inhomoge-
neous hard-sphere fluid. The theory proposed by Yu and Wu19

overcomes this shortcoming, using a radical distribution function
represented by the weighted densities from the fundamental
measure theory (FMT).20,21 Their theory gives fairly accurate
density profiles and surface excess of confined HSC mixtures,19

and the intra- and intermolecular radical distribution functions
of bulk chain fluids.22,23By including the dispersion interaction
via mean-field approximation, their theory has been successfully
extended to study the structures, adsorptions, wetting, layering,
and capillary phase transitions of inhomogeneous polymer
melts.24-26 However, as we have pointed out for atomic fluid,
the mean-field approximation is a poor theory for the Helmholtz
energy functional due to dispersion interaction.27-29

In this paper, the DFT of Yu and Wu19 is extended to
polymeric fluids with dispersion force by introducing a new
radial distribution function of polymer monomers in terms of
the weighted densities from the FMT and making a functional
Taylor expansion proposed by Rosenfeld.30 The polymer melt
is represented by a freely jointed hard-core multi-Yukawa chain
fluid which has proven to be a good approximation for alkanes.31

The bulk direct correlation function from the first-order mean
spherical approximation (FMSA)32 is chosen for the implemen-
tation of the excess Helmholtz energy functional due to
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dispersion force. It has been applied to describe the structures,
adsorptions, and capillary phase transitions of the hard-core
multi-Yukawa chain fluids in slitlike pores. Compared with
previous theories33,34for confined polymeric fluids, the method
reported here has the advantages of simplicity, numerical
efficiency, and good accuracy. In the following section, we
present the DFT for the hard-core multi-Yukawa chain fluid.
We present and discuss the numerical results for the density
profiles, bond orientation correlations, adsorption isotherms, and
capillary phase transitions in section III, and we end with some
conclusions in section IV.

II. Model and Theory

A. Molecular Model. We study the structure and equilibrium
phase transition of an inhomogeneous chain fluid which
incorporates the relevant features of polymeric materials:
excluded volume of segments, chain connectivity, and attractive
and repulsive interactions between monomers. The chains are
modeled as a pearl necklace of freely jointed hard-core multi-
Yukawa spheres with diameterσ. The bonding potentialVb(R)
is given by

whereR ) {r1,r2,...,rM} is a set of coordinates describing the
position ofM segments on each chain,δ(r) is the Dirac delta
function, k is the Boltzmann constant, andT is the absolute
temperature. The monomeric units interact via a Yukawa
potential with multiple tails. This segment-segment interaction
uY(r) is represented as

whereσ is the diameter of segments,r is the center-to-center
distance between two interacting segments,m is the number of
tails, εi and λi represent, respectively, the potential energy at
contact and the screening length of Yukawa taili.

We model the pore as a slit formed by two parallel attractive
walls separated by a distance ofH + σ. Each monomer on the
chains interacts with the walls via a Yukawa-type potential given
by

with

wherez is the normal distance from the left wall,λW and εW

are, respectively, the interaction range and strength parameters
between the monomers and the wall. IncreasingεW, the wall
attracts the fluid and eventually the fluid will wet the wall.

B. Density Functional Theory. For the model system
considered above, the density functional theory can be obtained
by extending our previous theory19 to the hard-sphere chain
(HSC) fluid. Generally, the grand potential functionalΩ is
related to the Helmholtz energy functionalF via a Legendre
transform

where dR ) dr1 dr2 ... drM represents a set of differential
volumes for the polymer chain ofM segments,µM is the polymer
chemical potential, andVM

ext(R) denotes the total external
potential on the chain. The total potential on each chain molecule
is equal to the sum of the potential energy on its individual
segments, that is,VM

ext(R) ) ∑i)1
M Vi

ext(r i).
The Helmholtz energy functionalF can be formally expressed

as an ideal-gas contributionFid plus an excess termFex that
accounts for intra- and intermolecular interactions other than
the bonding potential

whereFid is the ideal-gas contribution given exactly by

To derive the excess Helmholtz energy functional due to both
intra- and intermolecular interactions, we decomposeFex into
three parts

where F(r ) represents the total segment density profile. The
subscripts hs, ch, and dis denote, respectively, contributions to
the excess Helmholtz energy functional due to the hard-core
repulsion, chain formation, and long-ranged dispersive forces.
In writing eq 8, we assume that the excess Helmholtz energy
functional can be effectively accounted for by using only
segment densities. The total segment densityF(r ) is given by a
sum of that for individual segments

whereFsi(r ) stands for the local density of segmenti on the
chain.

The excess Helmholtz energy functional due to the hard-core
repulsion is well described by the modified fundamental measure
theory (MFMT),21 that is,

where the superscripts (S) and (V) represent the contributions
from scalar- and vector-weighted densities, respectively. The
scalar Helmholtz energy density is given by

and the vector part is expressed by

In the above equations, the weighted densitiesnR(r ) are defined
as

exp[-Vb(R)/kT] ) ∏
i)1

M-1 δ(|ri+1 - rj| - σ)

4πσ2
(1)

uY(r) ) {∞ r < σ

-∑
i)1

m εi exp[-λi(r - σ)/σ]

r/σ
r g σ (2)

Vi
ext(z) ) {W(z) + W(H - z) 0 e z e H

∞ otherwise
(3)

W(z) ) -εW exp(-λWz/σ) (4)

Ω ) F[FM(R)] + ∫dRFM(R)[VM
ext(R) - µM] (5)

F ) Fid + Fex (6)

Fid ) kT∫dRFM(R)[ln FM(R) - 1] + ∫dRFM(R) Vb(R)
(7)

Fex ) Fhs[F(r )] + Fch[F(r )] + Fdis[F(r )] (8)

F(r ) ) ∑
i)1

M

Fsi(r ) ) ∑
i)1

M ∫dR δ(r - r i) F(R) (9)

Fhs ) kT∫dr{Φhs(S)[nR(r )] + Φhs(V)[nR(r )]} (10)

Φhs(S)[nR(r )] ) -n0 ln(1 - n3) +
n1n2

1 - n3
+

n2
3 ln(1 - n3)

36πn3
2

+

n2
3

36πn3(1 - n3)
2

(11)

Φhs(V)[nR(r )] ) -
nV1‚nV2

1 - n3
-

n2nV2‚nV2 ln(1 - n3)

12πn3
2

-

n2nV2‚nV2

12πn3(1 - n3)
2

(12)
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whereR ) 0, 1, 2, 3,V1, andV2 denote the index of six weight
functionsw(R)(r ). The six weight functions are independent of
the density profiles, which are given by

whereΘ(r) is the Heaviside step function.
According to our previous work, the Helmholtz energy

functional due to chain formation under inhomogeneous condi-
tions can be obtained by extending the first-order thermody-
namic perturbation theory19

whereâ ) 1/kT, ú ) 1 - nV2‚nV2/n2
2 is an inhomogeneity factor,

andg(σ,nR) is the radial distribution function of hard-core multi-
Yukawa monomers. To obtain a more accurate radial distribution
function g(σ,nR) for multi-Yukawa monomers, the following
SEXP approximation is employed:

whereghs(σ,nR) is the radial distribution function of hard-sphere
fluid andg(1)(σ,nR) is the first-order approximation of the radial
distribution function of multi-Yukawa spheres.ghs(σ,nR) has
been obtained before and is given by19

In this work, the expression forg(1)(σ,nR) is modified from
the solution of the FMSA for hard-core multi-Yukawa mixtures.
From Tang’s work,35 we can obtain the following expression
for g(1)(σ,nR) at bulk limit:

where

with ên ) (π/6)∑Fkσk
n (superscriptn ) 0, 1, 2, 3) and∆ ) 1 -

ê3. It should be mentioned that another expression forg(1)(σ)
derived by Tang et al.36 results in the same values ofg(1)(σ) as
the above equations at bulk limit. We prefer eqs 20-26 because
they are easy to be extended to inhomogeneous fluid in terms
of the FMT. Using the rule proposed previously,7 we obtain
the following expression forg(1)(σ,nR)

Finally, the dispersion part of the excess Helmholtz energy
functionalFdis is approximated by a functional Taylor expansion

where∆CMY
(2)b(r) ) CMY

(2)b(r) - Chs
(2)b(r) and CMY

(2)b(r) and Chs
(2)b(r)

are the bulk second-order direct correlation functions for hard-
core multi-Yukawa fluid and hard-sphere fluid, respectively.
In this work,∆CMY

(2)b(r) is obtained from the FMSA solution for
the corresponding hard-core multi-Yukawa fluid in the bulk
case.29,36

Minimization of the grand potential with respect to the density
profile FM(R) yields the following Euler-Lagrange equation:

where Λ(R) ) δFex/δFM(R). Because the excess Helmholtz
energy functional used in this work depends only on the segment
density profileF(r ), Λ(R) can be simplified to

Substituting eq 34 into eq 33 yields

whereψi(r i) is related to the excess Helmholtz energy functional
Fex and the external potentialVi

ext(r i) by

Equation 35 indicates that as in a typical self-consistent-field
theory, the segment density is determined by the chain con-
nectivity and an effective external potentialψi(r i). Because eq
35 involves only the total segment density, the self-consistent
field is identical for all segments.

nR(r ) ) ∫dr ′ F(r ′) w(R)(r ′ - r ) (13)

w(2)(r) ) πσ2w(0)(r) ) 2πσw(1)(r) ) δ(σ/2 - r) (14)

w(3)(r) ) Θ(σ/2 - r) (15)

w(V2)(r ) ) 2πσw(V1)(r ) ) (r /r)δ(σ/2 - r) (16)

âFch ) 1 - M
M ∫drn0ú ln g(σ,nR) (17)

g(σ,nR) ) ghs(σ,nR) exp[g(1)(σ,nR)] (18)

ghs(σ,nR) ) 1
(1 - n3)

+
n2σú

4(1 - n3)
2

+
n2

2σ2ú

72(1- n3)
3

(19)

g(1)(σ) ) ∑
i)1

m

âεi[B(λi)]
2 (20)

B(λi) ) 1 +
2πPn(λi)F

[∆ - 2πPn(λi)F]
(21)

Pn(λi) ) æ2(λi)P0 + æ1(λi)P1 (22)

P0 ) 1 + 3ê3/∆ (23)

P1 ) σ + 3ê2σ
2/(2∆) (24)

æ1(λi) )
σ2(1 - λi - e-λi)

λi
2

(25)

æ2(λi) )
σ3(1 - λi + λi

2/2 - e-λi)

λi
3

(26)

g(1)(σ,nR) ) ∑
i)1

m

âεi[B(λi,nR)]2 (27)

B(λi,nR) ) 1 +
2πn0úPn(λi,nR)

[1 - n3 - 2πn0úPn(λi,nR)]
(28)

Pn(λi,nR) ) æ2(λi)P0(nR) + æ1(λi)P1(nR) (29)

P0(nR) ) 1 + 3n3/(1 - n3) (30)

P1(nR) ) σ + n2úσ2/[4(1 - n3)] (31)

Fdis ) - kT
2∫∫dr dr′∆CMY

(2)b(|r ′ - r |) F(r ) F(r ′) (32)

FM(R) ) exp[âµM - âVb(R) - âVM
ext(R) - âΛ(R)] (33)

Λ(R) )
δFex

δFM(R)
) ∑

i)1

M δFex

δF(r i)
(34)

FM(R) ) exp[âµM - âVb(R) - â∑
i)1

M

ψi(r i)] (35)

ψi(r i) ) δFex/δF(r i) + Vi
ext(r i) (36)
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From eqs 7 and 35, we can obtain the total segment density
profile

For a polymer confined in a slitlike pore, the segment density
distribution varies only in thez-direction. In this case, the
multidimensional integral in eq 37 can be simply factored as

whereGL
i (z) is determined from the recurrence relation

for i ) 2, ... ,M with GL
1(z) ) 1. Because the external potential

is the same for all the monomers on the chain, we have the
symmetric relation

The chemical potential for solving the segment density
profiles is obtained from eq 38 by switching off the external
potential VM

ext(R). The segment density profiles are solved
using the Picard-type iteration method through eqs 38-40. The
iteration repeats until the relative percentage change is smaller
than 0.01% at all points. The numerical integrations are
performed using the trapezoidal rule with the step size∆z )
0.005σ.

III. Results and Discussion

A. Density Profiles. As a test of our DFT, we compare the
density profiles predicted from the present DFT with that from
the canonical ensemble Monte Carlo (CMC) simulations. For
direct comparison, the bulk density in the DFT calculations is
adjusted such that the two approaches yield the same average
segment density in the pore. Figures 1-4 present the theoretical
predictions for hard-core one-Yukawa 5-mers, 10-mers, and 20-
mers, along with the CMC simulation results33 under various
conditions. For each set of density and temperature, two wall
energy parameters,εW/ε1 ) 0 and 1.0, are considered. Here,
the average packing fractionηav is defined asηav ) πFavσ3/6,

whereFav is the average number density of segment given by

and the reduced temperature is defined asT* ) kT/ε1. From
Figures 1-4, one can see that the behavior of the density profiles
of hard-core one-Yukawa chains confined between hard walls
(εW ) 0) is similar to that of the hard-sphere chain fluid. The
density profiles are governed by the competition between the

Figure 1. Reduced density profiles of one-Yukawa 10-mers (λ1 )
2.5) in a slitlike pore (H ) 10σ, λW ) 2.5) at a reduced temperature of
T* ) 5.0 and an average packing fraction ofηav ) 0.2 for the wall
energy parameters: (a)εW ) 0; (b) εW/ε1 ) 1.0. The symbols and solid
curves represent the results from the CMC simulations of Goel et al.33

and the present DFT, respectively.

F(r ) ) ∫dR∑
i)1

M

δ(r - r i) exp[âµM - âVb(R) - â∑
i)1

M

ψi(r i)]

(37)

Fsi(z) ) exp[âµM - âψi(z)]GL
i (z) GR

i (z) (38)

GL
i (z) ) ∫dz′ exp[-âψi(z′)]

θ(σ - |z′ - z|)
2σ

GL
i-1(z′) (39)

GR
M-i+1(z) ) GL

i (z) (40)

Figure 2. Same as Figure 1 but withT* ) 2.0.

Figure 3. Reduced density profiles of one-Yukawa 20-mers (λ1 )
2.5) in a slitlike pore (H ) 10σ, λW ) 2.5) at a reduced temperature of
T* ) 5.0 and an average packing fraction ofηav ) 0.1 for the wall
energy parameters: (a)εW ) 0; (b) εW/ε1 ) 1.0. The symbols, dashed,
and solid curves represent the results from the CMC simulations, theory
of Goel et al.,33 and the present DFT, respectively.

Figure 4. Reduced density profiles of one-Yukawa 5-mers (λ1 ) 2.5)
in a slitlike pore (H ) 10σ, λW ) 2.5) at a reduced temperature ofT*
) 5.0 and an average packing fraction ofηav ) 0.4 for the wall energy
parameters: (a)εW ) 0; (b) εW/ε1 ) 1.0. The symbols and solid curves
represent the results from the CMC simulations of Goel et al.33 and
the present DFT, respectively.

Fav ) ∫0

H
F(z) dz/H (41)
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configurational and packing entropic effects. The depletion of
density profiles near the wall is shown at low densities, while
the opposite trend is found at high densities. In the case of
attractive walls (εW/ε1 ) 1.0), there is a net enhancement of
segment density near the surface compared to hard walls at the
same reduced temperature. The present DFT is in excellent
agreement with the simulation data under all conditions. In
particular, the density at contact predicted from the present DFT
is very close to the simulation value.

Figures 1 and 2 depict the density profiles of one-Yukawa
10-mers in the slitlike pores at reduced temperatures ofT* )
5.0 and 2.0, respectively. At lower reduced temperature (T* )
2.0), the fluid-fluid attraction is stronger and the tendency
toward depletion of the region near the wall is more pronounced.
In addition, Figures 1-4 show that all the densities near the
surfaces for one-Yukawa chains are lower than those for the
hard-sphere chain fluids at the same chain length, density, and
wall potential parameters. This phenomenon is similar to that
we found from the hard-core repulsive and attractive Yukawa
fluids before.28 All of these indicate that the intermolecular
attraction and chain formation cause a depletion of chain
segments near a wall, while the intermolecular repulsion and
packing effect lead to an enhancement of chain segments near
the wall.

The comparisons of the predictions from the present DFT
with that from the theory of Goel et al.33 for one-Yukawa 20-
mers are shown in Figure 3. The present DFT gives very
accurate density profiles near the wall, while the theory of Goel
et al.33 underestimates the layering of the chain at the surface
under these conditions. This deficiency in their theory can be
improved by a proper choice of bridge function. An important
difference between two theories is that the intramolecular
interactionVb(R) in the inhomogeneous fluid is obtained by
carrying out Monte Carlo simulation of a single chain in the
theory of Goel et al.,33 whereas intramolecular correlations and
segment density profiles are obtained in a self-consistent manner
in the present theory. The advantage of the present DFT is that
it uses the analytical direct correlation function from the FMSA
and avoids solving the nonlinear PRISM integral equation
numerically in the calculation. This makes the present DFT
easier to implement.

B. Chain Conformations. The present DFT can provide the
local information about the orientation of each bond along the
chain. The orientation of each chain segment in the inhomo-
geneous condition is generally presented by the bond orientation
correlation functions(z) defined as

wheres is the bond anisotropy factor,ω is the angle between
the bond (vector joining the centers of adjacent segmentsi and
i + 1 on a chain) and thez axis (normal to the wall),z is the
coordinate of the bond middle point, and〈‚‚‚〉 stands for the
average over all bonds and configurations. For the model
considered in this work, it is easy to see thatσ cosω ) zi+1 -
zi. To evaluate this quantity, we need a set of intramolecular
distribution functionsFi,i+1(z,z′) defined by

From eq 43 and the Euler-Lagrange equation (eq 35), we can
obtain the factorization expression ofFi,i+1(z,z′)

Then, the bond orientation correlation function is easily evalu-
ated from

wherey ) cosω. From the definition of the bond orientation
correlation function, we know thats(z) ) -0.5 denotes that
bonds are parallel to the solid walls,s(z) ) 0 corresponds to
randomly oriented bonds, ands(z) ) 1.0 denotes that bonds
are normal to the solid walls.

In Figure 5, we compare the bond orientation correlation
functions predicted from the present DFT with that from the
CMC simulations for hard-core one-Yukawa 10-mers in a hard
slitlike pore (H ) 10σ, εW ) 0) at reduced temperatureT* )
∞ and average packing fractionηav ) 0.1 and 0.4. In this limit
of reduced temperature, the hard-core one-Yukawa chain fluid
is reduced to HSC fluid. The agreements between the present
DFT predictions and the CMC simulation data are very good.
Figure 5 shows that the bond anisotropy persists only half or
one segment diameter at low density and persists over three or
four segment diameters at high density, just like the density
inhomogeneities in the pore.

The effects of fluid-fluid and fluid-wall attractions on the
bond orientations in a slitlike pore (H ) 10σ, λW ) 1.8) for
two-Yukawa 20-mers (λ1 ) 2.8647,λ2 ) 13.5485,ε2/ε1 ) -
1.4466) are presented in Figures 6 and 7 for bulk packing
fraction ηb ) 0.2 and 0.35, respectively. In this case, the two-
Yukawa monomers mimic the Lennard-Jones potential, which
is repulsive near the contact distance and becomes attractive at
long enough distance. Nevertheless, the attractive dispersion
force is dominant in this case. Figures 6 and 7 suggest that the
chain segments are aligned parallel to the solid surface in its
vicinity. The bond anisotropy of the two-Yukawa 20-mers
persists for a short distance at low density, and the strong
oscillations of the bond orientation correlation function are
observed at high density. When the intermolecular attraction
between chain segments appears, the oscillations of the bond
orientation correlation function become less pronounced. On
the other hand, the introduction of the fluid-wall attraction
enhances the oscillations. The preferential normal to the wall
alignment (peak to profiles as shown in Figure 7) is closely
related to the segment layering. It reflects the necessity for bonds
having their middlepoints in this region to connect segments in
the first and second layer, and therefore to have an orientation
more or less normal to the solid surface.

C. Adsorption and Capillary Phase Equilibrium. We now
apply the present DFT to the multi-Yukawa chain fluids with a
special attention given to the effect of fluid-fluid and fluid-
wall attractions on adsorption and capillary phase transition in
slitlike pores. Figure 8 compares the adsorption isotherms of
hard-sphere, one-Yukawa (λ1 ) 1.8) and two-Yukawa (λ1 )
1.8,λ2 ) 4.0,ε2/ε1 ) - 1.0) 20-mers confined in a hard slitlike
pore at a reduced temperature ofT* ) 3.5. Here, for the one-
Yukawa 20-mers, the monomers interact with each other by an
attractive Yukawa potential, while, for the two-Yukawa 20-mers,
the potential between the monomers is zero at contact and

Fi,i+1(z,z′) ) exp[âµM - âψi(z) -

âψi(z′)]
θ(σ - |z - z′|)

2σ
GL

i (z) GR
i+1(z′) (44)

〈cosω〉 )
1

M-1
∑
i)1

M-1∫-1

1
dyFi,i+1(z -

σ

2
y,z +

σ

2
y)y2

∫-1

1
dyFi,i+1(z -

σ

2
y,z +

σ

2
y)

(45)

s(z) ) [3〈cosω〉 - 1]/2 (42)

Fi,i+1(r ,r ′) ) ∫dRδ(r - r i) δ(r ′ - r i+1) FM(R) (43)
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becomes attractive at long distance. Overall, the attractive force
between the two-Yukawa monomers is smaller than that between
one-Yukawa monomers. The excess adsorption is defined as

From Figure 8, one can see that, for polymeric fluids confined
in a hard slitlike pore (H ) 10σ, εW ) 0), the excess adsorption
Γex is negative at low density and becomes positive at high

enough density. This can be well understood by the competition
between chain configurational and packing entropic effects. It
is interesting to see that the attraction between chain segments
substantially decreases the excess adsorptionΓex of chain fluids
in the hard slitlike pore. Because the temperature in this figure
is higher than the critical points of both one- and two-Yukawa
chain fluids, no capillary condensation is observed.

Figure 9 depicts the adsorption/desorption isotherms and
reduced grand potential of two-Yukawa 4-mers (λ1 ) 2.673,λ2

) 4.408,ε2/ε1 ) 3.955/4.755) confined in a hard slitlike pore
(H ) 5σ, εW ) 0) at a reduced temperature ofT* ) 0.6. Here,
the reduced grand potential is defined asΩ* ) Ωσ2/AkT, where
A is the surface area. The capillary condensation phenomenon
takes place and can be clearly observed in the figure. The solid
vertical line connecting points A and B in Figure 9a represents
the equilibrium capillary phase transition, corresponding to the
crossover point C in Figure 9b. This indicates that, at equilibrium
phase transition in the pore, both the chemical potential and
grand potential in the liquidlike phase are equal to that in the

Figure 5. Comparison of bond orientation correlation function
predicted from the present DFT with those from CMC simulations for
one-Yukawa 10-mers in a slitlike pore (H ) 10σ, εW ) 0) at a reduced
temperature ofT* ) ∞ and an average packing fraction ofηav ) 0.1
and 0.4. The symbols and solid curves represent the results from the
CMC simulations of Goel et al.33 and the present DFT, respectively.

Figure 6. Bond orientation correlation function predicted from the
present DFT for two-Yukawa 20-mers (λ1 ) 2.8647,λ2 ) 13.5485,
ε2/ε1 ) -1.4466) confined in a slitlike pore (H ) 10σ, λW ) 1.8) at a
bulk packing fraction ofηb ) 0.2 and various values of temperatures
and wall energy parameters.

Figure 7. Same as Figure 6 but withηb ) 0.35.

Γex ) ∫0

H
[F(z) - Fb] dz (46)

Figure 8. Adsorption isotherms predicted from the present DFT for
hard-sphere, one-Yukawa (λ1 ) 1.8) and two-Yukawa (λ1 ) 1.8,λ2 )
4.0, ε2/ε1 ) - 1.0) 20-mers in a slitlike pore (εW ) 0, H ) 10σ) at a
reduced temperature ofT* ) 3.5. Dash-dotted, dashed, and solid curves
represent the results for hard-sphere, one-Yukawa and two-Yukawa
chains, respectively.

Figure 9. The predicted results of (a) the average density and (b)
reduced grand potential as a function of the chemical potential for two-
Yukawa 4-mers (λ1 ) 2.673;λ2 ) 4.408;ε2/ε1 ) -3.955/4.755) in a
hard slitlike pore (εW ) 0, H ) 5σ) at a reduced temperature ofT* )
0.6. The solid curves represent the thermodynamically stable states,
and the dashed curves denote the metastable states.
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gaslike phase. For the polymeric fluid confined in a hard slitlike
pore, no layering transition can be found.

From the adsorption/desorption isotherms and grand potential
presented in Figure 9, we can determine the coexistence density
for the equilibrium capillary phase transition. Figures 10 and
11 depict the phase diagrams of confined and bulk two-Yukawa
4-mers (λ1 ) 2.673,λ2 ) 4.408,ε2/ε1 ) 3.955/4.755) at wall
parameters ofλW ) 1.8 andεW/ε1 ) 0 and 1.0. Here, the average
density over the entire pore is calculated fromF′av ) FavH/(H
+ σ). In both hard and attractive pores, the effect of the pore
width on theT*-F′avσ3 diagram is similar; that is, the confine-
ment lowers the critical temperature and the lowering is larger
for narrower pores. The average liquidlike densityF′av of the
confined chain fluid is always lower than that in the bulk phase.
On the other hand, the density of the dilute vaporlike phase is
less affected by the confinement: it may be lower or higher
than the bulk vapor density (see Figure 10a). However, there is
a qualitative difference between hard and attractive pores on
µ/kT-T* diagrams. Figure 10b shows that the equilibrium
capillary phase transition of the chain fluid in the hard slitlike
pore occurs at a higher chemical potential than in bulk condition.
As the attraction of the pore wall is increased, the chemical
potential for equilibrium capillary phase transition of the
confined chain fluid becomes lower than that for bulk vapor-
liquid equilibrium, as shown in Figure 11b. Because we focus
on the equilibrium capillary phase transition, there is no layering
transition at the wall parameters considered here. If the wall
energy parameterεW is large enough, the layering transition of
a multi-Yukawa chain fluid in a pore will occur.24

IV. Conclusions

A density functional theory is presented to investigate the
density profiles, chain conformations, and equilibrium capillary
phase transition of freely jointed hard-core multi-Yukawa chain
fluids confined in slitlike pores, including the effects of fluid-
fluid and fluid-wall attractions. The excess Helmholtz energy
functional is constructed by using the modified fundamental
measure theory of Yu and Wu for hard-core contribution, the
first-order thermodynamic perturbation theory for chain forma-
tion, and Rosenfeld’s perturbative method for dispersion
contribution. The required radial distribution function and bulk
second-order direct correlation function for multi-Yukawa
monomers are obtained from the analytical solution of the
Ornstein-Zernike integral equation with the first-order mean
spherical approximation. The obtained theory avoids the nu-
merical solution of the integral equation and is easy to
implement. Comparisons of the density profiles predicted from
the present density functional theory with that from the canonical
Monte Carlo simulations show that the present theory is quite
accurate. In contrast, the theory of Goel et al.33 always
underestimates the density profiles of one-Yukawa chain fluids
in the slitlike pores. Both theory and simulation indicate that
the intermolecular attraction and chain formation cause a
depletion of chain segments near a solid surface, while the
intermolecular repulsive and packing effect lead to an enhance-
ment of chain segments near a solid surface.

The chain configurations of polymer melts in the slitlike pores
are investigated through the bond orientation correlation func-
tions. When the present density functional theory is applied to
the calculation of the bond orientation correlation function for
hard-sphere chain fluid, an excellent agreement between the
predictions and simulation data is achieved. The predictions from
the present theory show that the chain segments are aligned

Figure 10. Phase diagram predicted from the present DFT for the
two-Yukawa 4-mers (λ1 ) 2.673;λ2 ) 4.408;ε2/ε1 ) -3.955/4.755)
confined in the hard slitlike pores (εW ) 0): (a)T*-F′avσ3 projections;
(b) µ/kT-T* projections. The solid, dashed, and dash-dotted curves
represent the results for the pore widthH ) 5σ, the pore widthH )
15σ, and the bulk case, respectively.

Figure 11. Same as Figure 10 but for the wall energy parameterεW/
ε1 ) 1.0.
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parallel to the solid surface in its vicinity. The bond anisotropy
of two-Yukawa 10-mers persists over a short distance (half to
one segment diameter), and the strong oscillations of the bond
orientation correlation function are observed at high density.
The effects of fluid-fluid and fluid-wall attractions on the bond
orientation correlation function are similar to that on the
corresponding density profiles.

When a polymeric fluid is confined in a slitlike pore, the
critical temperature of capillary phase transition is always
smaller than that in the bulk case. The coexistence average
liquidlike density over the whole pore is always lower than that
in the bulk phase, while the density of the dilute vaporlike phase
is less affected by the confinement. The chemical potential for
the equilibrium capillary phase transition of chain fluids confined
in a hard slitlike pore (εW ) 0) is higher than that for the bulk
vapor-liquid equilibrium, but if the attraction of the pore wall
is strong enough, it becomes lower than that in the bulk case.
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