
A

w
f
e
e
©

K

1

p
t
a
a
T
e
c
t
i
i
i
C
s

t
o
a
o
m

0
d

Fluid Phase Equilibria 256 (2007) 105–111

Mutual diffusion coefficients of concentrated 1:1 electrolyte from the
modified mean spherical approximation

Guang-Hua Gao ∗, Hong-Bing Shi, Yang-Xin Yu
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Received 6 July 2006; received in revised form 26 October 2006; accepted 28 November 2006
Available online 2 December 2006

bstract

Mutual diffusion coefficients of concentrated 1:1 electrolyte solutions are investigated using a modified mean spherical approximation (MSA), in
hich the effective cationic diameter is a function of total ionic strength. We apply this improved MSA to calculate the equilibrium pair correlation
unction, and the Smoluchowski equation is used for the dynamics. We compare the calculated mutual diffusion coefficients of 18 uni-valence
lectrolyte solutions for molar concentrations up to 4.0 mol/L known experimental data. Good agreement between theoretical results and the
xperimental mutual diffusion coefficients are found for all the cases studied.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Aqueous electrolyte solutions are involved in many industrial
rocesses, such as extractive distillation, solution crystalliza-
ion, ion exchange, membrane separation, wastewater treatment,
bsorption refrigeration, etc. They also appear in every-day life
s detergents, dyes and carriers in drug delivery systems as well.
he knowledge of their properties, especially the transport prop-
rties are vital not only for the design and optimization of various
hemical and environmental engineering processes but also for
he understanding of charged particle solutions. Due to the strong
nteractions of long-ranged Coulomb forces and the solvation of
ons, electrolyte solutions exhibit appreciable deviations from
deal solution behavior, particularly at high concentration[1–3].
onsequently, the description of their transport properties is a

ignificant theoretical challenge.
After decades of research, there has been great progress in

he theoretical investigation on the electrolyte solution. A variety
f approaches, including hydrodynamic theory, kinetic theory,

nd statistical mechanics, have been applied to the problem
f predicting liquid mass-transport properties [4]. Statistical
echanics becomes one of the most promising approaches
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o study electrolyte solutions after the mathematic difficul-
ies involved were overcome by Debye and Hückel [5] by
ntroducing the concept of “ionic atmosphere” to compute the
hermodynamic properties of this system in very dilute solution.

Onsager and Fuoss [6] developed a limiting law for the
ariation of the diffusion coefficients and the conductiv-
ty with concentration, which is essentially an extension of
ebye–Hückel ion atmosphere model. In 1957, Onsager [7]
ade an attempt to extend the validity of the law to higher con-

entrations using more accurate equilibrium pair distribution
unctions. These theories provide a quantitative representation
f the relation and electrophoretic effects. But due to the limi-
ations of the Debye–Hückel theory, the models are generally
alid only at very dilute condition [8,9]. A major improve-
ent over the classical theories is obtained by some research

roups through formulating a linear response theory in which
nsager continuity equations are combined either with the
ean spherical approximation (MSA) [10,11] or the hypernet-

ed chain equations (HNC) [12,13]. The theory has been applied
o the self-diffusion [14], acoustophoresis [15] and conductance
16] for non-associating electrolytes. The satisfactory agreement
etween theoretical results and experimental values shows some

imited success for these approaches.

Unfortunately, less attention has been paid to the theoretical
escription of mutual diffusion until Bernard et al. [17] cast a
ew light on the research in this field. However, the validation
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f the approach is limited below 1.0 mol/L. Furthermore, in
hese studies a unique hard sphere diameter is taken for a given
lectrolyte over the whole concentration range. In fact, previous
ndings have shown a diameter variation with concentration,
articularly for cations [1,18]. At the same time, Dufreche
t al. [19] took into account the influence of association for
–2 electrolyte with a chemical model. But the theory is less
onclusive. The problem results from the fact that there are
any unknown parameters, such as the ion size and the mobility

f the pair of ions.
More recently, Dufreche [20] modified Bernard’s method to

igh concentration range up to 4.0 mol/L for four alkali chlorides
olutions. Although impressive agreements have been obtained,
his approach is not ideal in that the cationic diameter is fixed and
ried arbitrarily. To date, no theory is available for the prediction
f mutual diffusion in more concentrated electrolyte solutions
8,19].

In this work, we extend the method proposed by Dufreche
20] to higher concentration through introducing an effective
ationic diameter, which is a function of total ionic strength.
he mutual diffusion coefficients of 13 alkali halides and five
ther uni-valence electrolyte solutions are reproduced over wide
oncentration ranges (0–4.0 mol/L). Only two parameters, σ0
nd λ0, are used to represent the effective cationic diameter for
given electrolyte, where σ0 denotes the hydration diameter of

he cation at infinite dilution and λ0 represents the variation in
ydration effect with the concentration.

. Previous theory

In an electrolyte solution containing only two kinds of ions,
he dominant forces that determine the deviations from the ideal
ehavior of transport processes are assumed to be the relax-
tion and electrophoretic forces [3,21,22]. The former tends
o restore the local electroneutrality perturbed by an external
orce, while the later, mediated by the solvent, tends to equalize
he drift velocities of particles submitted to an external force.
n the case of mutual diffusion, the condition of zero current
ow requires that both ions move with the same velocity. Thus,

he ion atmosphere of a given ion is displaced as a whole and
evelops no asymmetry. As a result, the electrostatic relaxation
ffect can be neglected, even in concentrated solution. However,
he electrophoretic effect must be taken into account in binary
ystem.

Dufreche [20] calculated the mutual diffusion coefficient of
he electrolyte solution by combining the Smoluchowski equa-
ion for the thermodynamic and the MSA for equilibrium pair
orrelation function. The main expressions are outlined below.
ou can find the detailed derivation in the relevant reference if
ou are interested. The mutual diffusion coefficient is

S
m = Q11D

∗
21 +Q22D

∗
12

Q11 +Q22
(1)
ith

ij = zje2ρi

kBTε0εr

(
ziD

0
i + kBT

2∑
k=1

zkΩik

)
(2)

�

n

ilibria 256 (2007) 105–111

∗
ij = D0

i

∂βP

∂ρi
+ kBT

2∑
k=1

Ωik
∂βP

∂ρk
(3)

ij = 2

3η
ρj

∫ ∞

0
rhih(r) dr (4)

here ρi and zi are the number density and the ionic charge of
he ith ion, respectively, e the electronic charge, ε0 the permit-
ivity of vacuum, εr the relative permittivity of pure water (taken
s 78.36 at 298 K), kB the Boltzmann constant, T is the absolute
emperature and P denotes the pressure of electrolyte solution.
ij(r) is the total correlation function, η the pure solvent viscos-
ty, and D0

i is the limiting ionic diffusion coefficient, which is
alculated from the corresponding limiting ionic conductivity
0
i via Nernst-Einstein relation [3]

0
i = RT

|zi|F2 λ
0
i (5)

here R is the gas constant and F is the Faraday constant.
Eqs. (1)–(4) give the relationship of mutual diffusion coef-

cient with the compressibility and electrophoretic correlation,
hich will be dealt with in the following section.
Because in the MSA theory, Ornstein-Zernike (OZ) equa-

ion can be solved analytically, it is widely used to describe the
rimitive model of electrolyte solution, in which solute ions of
n electrolyte solution are modeled as electrically charged hard
pheres with different diameters, while the solvent is treated as
continuous dielectric medium. The basic assumption of the

rimitive model of the MSA for electrolyte solution is

ij(r) = 0, r < σij, Cij(r) = −zizje2

εrkBTr
, r > σij (6)

here σij = (σi + σj)/2. σi is the ion diameter of the ith ion.
Based on Eq. (6), Blum [23] solved the Ornstein-Zernike

quation and expressed the MSA shielding parameter Γ as

2 = πLB

∑
i

ρi

(
zi − (π/2�)σ2

i Pn

1 + Γσi

)2

(7)

here

B = e2

4πε0εrkBT
(8)

n = 1

Ω

∑
k

ρkzkσk

1 + Γσk
(9)

= 1 + π

2�

∑
k

ρkσ
3
k

1 + Γσk
(10)

π∑ 3
= 1 −
6

k

ρkσk (11)

The summations in Eq. (7) are carried out over all positive and
egative ions, Γ can be solved by a simple iterative procedure
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ith the initial value of K/2 or K/6, where

=
(∑

k

ρ2
kzk

)1/2

(12)

Previous studies [24,25] have suggested that it may be
ossible to set Pn = 0 when the ion diameters are not too
ifferent from each other or when the Bjerrum length LB
s large as in molten salt systems. In these cases, the com-
ressibility of electrolyte solutions reduces to the sum of
ontributions from hard-sphere and long-range electrostatic
nteractions. The former contribution can be derived from
he Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL)
quation of state for the hard-sphere mixture.

∂βP

∂ρi

)HS

= 1

Δ
+ 3σiX2 + 3σ2

i X1 + σ3
i X0

Δ2

+σ
2
i X

2
2(9 − 3X3) + σ2

i X2(6X1 −X2
2)

Δ3

+σ
3
i X

3
2(9 − 3X3)

Δ4 (13)

The latter contribution is given by

∂βP

∂ρi

)C

=− LBΓ
2Z2

i

2(1 + Γσi)2
(
Γ +∑kρk(πLBZ

2
kσk)/(1 + Γσk)3

)
(14)

here

i = π

6

∑
k

ρkσ
i
k (15)

As for electrophoretic corrections, the contribution can be
xpressed as the sum of three terms

ij = ΩHS
ij +ΩC

ij +Ω
(2)
ij (16)

The first termΩHS
ij is the hard sphere electrosphoretic contri-

ution calculated by the integration of total correlation function
educed from PY theory with an average diameter.

HS
ij = − ((σi + σj)/2)2

3η
ρj

(1 − X̃3)/(5 + X̃2
3)/10

1 + 2X̃3
(17)

here

˜ 3 = π

6

∑
k

ρkσ
3
HS (18)

3
HS = 3X1X2/(X0 +X3)

4X0
(19)

The second term ΩC
ij is the electrostatic contribution in first

rder expansion of the Bjerrum’s length.
C
ij = − 1

3η

ZiZjLBρj

(1 + Γσi)(1 + Γσj)(
Γ +∑kρk(πLBZ

2
kσk)/(1 + Γσk)2

) (20)
h
t
d
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The last term Ω
(2)
ij is the second order expansion, that is

(2)
ij = − (ZiZjLBρj)2

3η(1 + Γσi)2(1 + Γσj)2 e2κDσijE(2κDσij) (21)

ith

(x) =
∫ ∞

x

e−u

u
du (22)

ij = σi + σj

2
(23)

It should be mentioned that the method to get the mutual dif-
usion coefficient in aqueous electrolyte solution is established
n the solvent-fixed frame of reference while the experiment is
erformed at fixed volume. As a result, a conversion must be per-
ormed between these two reference frames. A feasible choice is
o convert the concentration m in molality into the corresponding
oncentration c in molarity using the following equation [1]

= md

1000 +mM
(24)

here M is the molecular weight of the solute.
Another choice is to convert the calculated mutual diffusion

oefficient from solvent fixed reference frame into the volume
xed ones.

V
m = φDS

m (25)

here φ is the volume fraction of the solvent.

= 1 − cV± (26)

here V± is the mean solute partial molal volume of the elec-
rolyte calculated from (26).

± = M − d′

d − cd′ (27)

here d′ = ∂d/∂c. The density of the electrolyte solution d in Eqs.
24) and (27) can be expressed by the equation of Novotny and
ohnel [27].

= dw + Ac + Bc3/2 (28)

for a given electrolyte, A and B are constants. The density
f water is dw = 999.65 kg m−3 and c is the concentration of
lectrolyte solution in mol/L.

Actually, the two conversion approaches are equivalent and
ou may take anyone at your convenience.

. Modified theory

Although the ions are treated as hard spheres in primitive
SA, in fact, the cationic diameter used is not the diameter of
bare ion but the diameter of a hydrated one. The hydration

f anions is weak and can therefore be neglected; however, the

ydration of cations is strong and the hydration layer must be
aken into account. Because the thickness of the hydration layer
ecreases as the ion strength increases, the diameter of cations
n the MSA should decrease with increasing ionic strength. If
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− 2.30 1.7203

F− 2.62 2.62 1.4753
Cl− 3.62 3.62 2.0345
B
I

h
r
i
s
d
c
t
d

e
i
h
[
o
m
w
e
a
fi
σ

t
fi
i

T
P

S

L
L
L
N
N
N
N
N
K
K
K
K
R
C
H
H
N
N

08 G.-H. Gao et al. / Fluid Phas

e assume that the hydration of the cation is proportional to
he electrostatic potential ψ in the solution, and λ is twice the
hickness of the hydration layer of a cation, then

λ

λ0
= ψ(a)

ψ0(a)
(29)

here λ0 is twice the thickness of the hydration layer of the
ation at infinite dilution. The electrostatic potential in the solu-
ion can be calculated by the Debye–Hückel theory using the
on atmosphere approach.

The diameter of the hydrated cation in solution is

+ = σP+ + λ = σP+ + λ0

1 +Ka
(30)

hereσP+ is Pauling diameter of cation. If we take a, the distance
etween cation centers, as approximately equal to unity, and I1/2

s substituted for K, Eq. (30) becomes

+ = σP+ + λ0

1 + I1/2 (31)

Assuming σ0 = σP+ + λ0, then

+ = σ0 − λ0I
1/2

1 + I1/2 (32)

here σ0 is the hydration diameter of the cation at infinite dilu-
ion, and I is the total ionic strength of electrolyte MA in the
lectrolyte solution.

MA = 1

2
(mMZ

2
M +mAZ

2
A) (33)

here mM and mA are the total molalities of ions M and A in
he solution, respectively.
. Results and discussion

In the calculation, the anion diameters are kept constant
nd their values are listed in Table 1. The diameters of the

f
f
L
o

able 2
arameters of the cations from fit of mutual diffusion coefficients and the average rel

alts σP (×10−10 m) σP (×10−10 m)

iCl 1.20 4.35
iBr 1.20 4.35
iI 1.20 4.35
aF 1.90 3.05
aCl 1.90 3.05
aBr 1.90 3.05
aI 1.90 3.05
aNO3 1.90 3.05
F 2.66 2.95
Cl 2.66 2.95
Br 2.66 2.95
I 2.66 2.95
bCl 2.96 2.94
sCl 3.38 2.78
Cl 4.56
Br 4.56
H4Cl 3.86
H4NO3 3.86
r− 3.90 3.90 2.0798
4.32 4.32 2.0451

alide anions are equal to the Pauling diameters; the others are
egressed because there are no specific diameter values for these
ons in literature. This treatment is based on a previous finding
howing that the cation size increases more than the anion size
ue to the effect of hydration [26,28]. The effective diameters of
ations are calculated using Eq. (32). For a single electrolyte, the
wo parameters can be regressed from the experimental mutual
iffusion coefficient data.

Alkali metal halides solutions are the simplest of all aqueous
lectrolyte systems. Most of them are completely dissociated
n dilute solution producing strong electrolyte solutions that
ave been widely employed to test theories of ionic solution
3,29,30]. We first investigate the mutual diffusion coefficients
f 13 alkali metal halides in aqueous solution. The present treat-
ent is applied to the case of alkali halides MA solutions, in
hich M and A represent cation and anion, respectively. M is

ither Li, Na, K, Rb or Cs and A is either F, Cl, Br or I. For
given cation M, the data concerning the salts MA have been
tted at the same time with a common value for the parameter
0. We also investigate some other uni-valence electrolyte solu-

ion including HCl, HBr, NH4Cl, NH4NO3 and NaNO3. The
tted parameters of the effective diameter of cations, the max-

mum concentration, and the average relative deviation (ARD)

or each salt are listed in Table 2. The experimental mutual dif-
usion coefficients of KF and NaF solution is meausered by
u and Leaist [31] using a Taylor dispersion tube and those
f RbCl and CsCl in aqueous solution is meausered by Lyons

ative deviations of the calculated values from the experimental data

λ0 (×10−11 m) cm (mol/L) ARD (%)

9.89 4.0 0.75
−1.69 3.5 1.10
−4.41 1.0 0.90

3.57 1.0 1.24
3.07 4.0 0.69
0.44 2.5 1.92

−5.41 3.0 2.10
19.31 4.0 1.49
−2.20 4.0 1.37

2.38 4.0 0.83
0.18 4.0 1.01
1.01 3.5 2.08

−1.96 3.0 0.29
−3.57 3.0 0.28

4.73 4.0 1.57
16.09 1.0 0.67
18.09 4.0 0.22
24.98 4.0 0.77
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Fig. 2. The mutual diffusion coefficients of rubidium and cesium chlorides in
aqueous solutions at 298 K. Symbols have the same meaning as in Fig. 1.

Fig. 3. The mutual diffusion coefficients of lithium, sodium and potassium bro-
mides in aqueous solutions at 298 K. Symbols have the same meaning as in
Fig. 1.
ig. 1. The mutual diffusion coefficients of lithium, sodium and potassium chlo-
ides in aqueous solutions at 298 K. Lines represent the results from MSA, scatter
ymbols refer to experimental values.

nd Riley [32] and Jalota and Paterson [33]. If not expressly
tates, all the experimental data is taken from Lobo [34,35].
RD denotes the average relative deviation of the calculated
utual diffusion coefficients from the experimental data; i.e.,

RD (100%) = (100/N)
∑N
k=1

∣∣∣Dcal
m,k −D

exp
m,k

∣∣∣ /Dexp
m,k, where N

s the number of experimental data points.
It is clear from results in Table 2 that our fits to experimen-

al data using only two parameters are very good up to very
igh concentration. The major reason lies in that we take into
ccount the variation of the hydration effect with concentration
y introducing an effective cationic diameter, as shown in Eq.
32), while the previous theory neglect the fact that the hydra-
ion of cation is strong and the thickness of the hydration layer
ecreases as the ion strength increases. Table 2 also shows that
he fit yield unique parameter σ0 for a specific cation, namely,
ame value is taken for different salts involving common cation.
n the other hand, the values of σ0 for different cations share

he sequence of Rb < Cs < Na < K < Li due to a corresponding
ncrease in the degree of cation hydration with a decrease in
tomic number. The effective cationic diameter is larger than
ts Pauling diameter with the exception of Rb and Cs. It may be
xplained by the effect of short-range forces between ions which
s caused not only by the overlap of hydration spheres but also
y an additional short-range Coulomb attraction due to the high
olarizability of the rubidium, cesium and halide ions [26,36].

Comparisons of the calculated and experimental mutual dif-
usion coefficients for 13 alkali metal halides are shown in
igs. 1–4. Clearly the agreement between calculated values and
xperimental data is good up to the molarity of 4 mol/L. The
utual diffusion coefficients of alkali halide solutions decrease
ith concentration at low concentrations and increase steadily

t higher concentration with the exception of NaF.
In dilute concentrations, electrolyte solutions are often

odeled as consisting of highly solvated “free” ions. The

oncentration dependence of mutual diffusion coefficients is
overned by long-range Coulombic forces as predicted from
he Debye–Hückel theory, i.e., they decrease monotonically with
he increase of concentration. With increasing concentration, the

Fig. 4. The mutual diffusion coefficients of lithium, sodium and potassium
iodides in aqueous solutions at 298 K. Symbols have the same meaning as in
Fig. 1.
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ig. 5. The mutual diffusion coefficients of alkali metal halides in aqueous
olutions at 298 K.

ons being to directly interact and ionic association may occur.
he competition between the effect of activity coefficients and
ydrodynamic interactions determines the trend of the curve
f the mutual diffusion coefficient as a function of square root
oncentration.

Fig. 5 shows the collection of mutual diffusion coefficients
f alkali halide solutions studied. It reveals a curious result that
queous alkali halides can be classified into three main groups
epending on their diffusion coefficients in dilute solutions,
nown as the Nernst limiting diffusion coefficient, which is given
y

0
m = RT

F2

|z1| + |z2|
|z1z2|

λ0
1λ

0
2

λ0
1 + λ0

2

(34)

We can see that in this region differences in the Dm val-
es are governed primarily by differences in the limiting ionic
quivalent conductivities. At 298 K, the limiting ionic equiva-
ent conductivities of K+, Rb+, Cs+, Cl−, Br−, and I− ions are:
.35, 7.78, 7.73, 7.64, 7.81 and 7.68 mS m2 mol−1, respectively,
hich are nearly identical. Subsequently, it is not surprising that
m values for dilute KCl, KBr, KI, RbCl and CsCl solutions

re in the same group. By coincidence, however, the limiting
onic equivalent conductances of Na+ and F− ions are similar,
.e., 5.01 and 5.54 mS m2 mol−1, respectively. Hence KF, NaCl,
aBr and NaI form a second group of salts with similar diffu-

ion coefficients in dilute solution. Similarly, NaF, LiCl, LiBr
nd LiI form the third group, as can be clearly seen from Fig. 5.

The mutual diffusion coefficients in dilute electrolyte solu-
ions obey a limiting law proposed by Onsager and Fuoss [6].

hen the concentration increases, the simple pattern of diffusion
oefficients clearly breaks down. The concentrated electrolyte
olutions show strongly non-ideal behavior. For example, the
iffusion coefficients of LiBr, NaI, KCl, KBr, RbCl and CsCl
ncrease rapidly with concentration increase, producing a num-
er of crossovers. While the mutual diffusion coefficients of

iCl, NaCl and KF show a sluggish increase with the concentra-

ion increase. For a given cation M, the larger the anion diameter,
he higher the values of mutual diffusion coefficients of the salts

A. For example, the mutual diffusion coefficients of the potas-

a
m
c

nd ammonium chloride in aqueous solutions at 298 K. Symbols have the same
eaning as in Fig. 1.

ium halides fall in the series KI > KBr > KCl > KF, in coincide
ith the size order of the anion diameter. For a given anion A,

he mutual diffusion coefficients of the salts MA increase with
ncreasing cationic radius, with the exception of the rubidium.
et’s take Cl as an example, the sequence of mutual diffu-
ion coefficient is RbCl > CsCl > NaCl > KCl > LiCl. Although
o theory can explain the anomaly, we think that it is partially
ue to the association between ions. The conductivity measure-
ents in dilute solutions have shown that both caesium and

ubidium chlorides are significantly associated while other alkali
etals are not. It should be pointed out that the concentration

ependence of mutual diffusion coefficients for fluorides solu-
ion differs obviously from those of other halides. The good
nterpretation for this phenomenon is likely the rather strong
ydration of aqueous F ions.

We now turn to the case of other uni-valence electrolyte solu-
ions including HCl, HBr, NH4Cl, NH4NO3 and NaNO3. It can
e seen from Table 2 that the parameters of λ0 for these five
lectrolytes are larger than those of alkali halides. The result is
ikely due to either the association between cation and anion in
oncentrated solution or the complexity of ions. In our calcula-
ion, the ammonium and nitrate are regard as a hard sphere with
regressed diameter, although the actual nitrate ion possesses a
lanar geometry and the real ammonium ion is tetrahedral.

In Fig. 6, we compared the calculated mutual diffusion coef-
cients with the experimental data for aqueous HCl, HBr and
H4Cl solutions at 298 K. It shows that at both low and high

lectrolyte concentration, excellent agreements is obtained. The
urves of mutual diffusion coefficients versus square root of con-
entration for HCl, HBr and NH4Cl solutions take the same trend
s for alkali metal halides solution, i.e., they decrease firstly with
he increasing concentration and then increase after reaching a

inima. From Fig. 6, we can also find that the mutual diffusion
oefficients of HCl and HBr vary more pronounced than that of
H4Cl.
Fig. 7 illustrates the mutual diffusion coefficients of NH4NO3
nd NaNO3 solutions as a function of the square roots of the
olar concentration. It is found that the mutual diffusion coeff-

ients of NaNO3 and NH4NO3 monotonically decrease with the
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