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Abstract

An equation for the self-diffusion coefficient in a polyatomic fluid is presented as a sum of three friction
coefficient terms: the temperature-dependent hard-sphere contribution, the chain contribution and the soft
contribution. This equation has been developed by using the molecular dynamics simulation data for the HS

Ž .chain fluid and the expression for the Lennard–Jones LJ fluid proposed by Ruckenstein and Liu. The real
nonspherical compounds are modeled as chains of tangent LJ segments. The segment diameter s , segment–LJ

Ž .segment interaction energy ´ and chain length N the number of segments are obtained from theLJ

experimental diffusion data. The equation reproduces the experimental self-diffusion coefficients with an
Ž . Ž .average absolute deviation AAD of 3.72% for 22 polyatomic compounds 1081 data points over wide ranges

Ž .of temperature and pressure. The results have been compared with that of the rough LJ RLJ equation. To
minimize the number of the fitting parameters, the energy parameter ´ is estimated using a correlationLJ

obtained from viscosity data. The equation with two parameters gives an AAD of 4.72%. q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The diffusion coefficients of dense fluids and their mixtures are required in many engineering
calculations involving mass transfer. A detailed study of diffusion is also very important for the
development of our understanding of molecular motions and interactions in these systems. For
monatomic gases at low densities, diffusion coefficients may be calculated at any temperature using

w xexact kinetic theory 1 . However, no formal theory may be used to evaluate diffusion coefficients for
monatomic fluids at high densities or polyatomic fluids in terms of a realistic description of the

Žmolecular interactions. Simple semitheoretical methods based on statistical mechanics such as
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.hard-sphere and square-well theories appear to be the most promising for engineering use. An
extensive review of diffusion coefficient prediction and correlation methods has been given by Liu et

w xal. 2 , which discussed the abundance of literature and compared several diffusion models.
Ž . Ž . Ž .Molecular dynamics simulations for hard-sphere HS , square-well SW or Lennard–Jones LJ

w xfluids were often employed to generate equations 3–5 for the self-diffusion coefficient of monatomic
fluids. Because no quantitative and analytical theoretical expression is available to estimate the

Ž . w xdiffusion coefficients of LJ fluids, the effective hard-sphere diameter EHSD method 6,7 was
w xapplied. Ruckenstein and Liu 8 compared the six EHSD expressions and found that the Boltzmann

w xEHSD with the parameters obtained by Ben-Amotz and Herschbach 9 leads to the best agreement
Ž . w xwith the diffusion data. For polyatomic fluids, Chandler’s rough hard-sphere theory RHS 10 can be

w xused as a connection between real and simple model fluids. For example, Sun et al. 11 presented
analytical expressions for the transport properties of the n-alkanes by combining the rough hard-sphere

w xtheory with the molecular dynamics results for the LJ fluids reported by Heyes 6 , and Hammonds
w xand Heyes 12 . The translational–rotational coupling factor of the RHS theory may depend on both

w x w xtemperature and density 3 , and for long chain molecules, it may be very small 13 . Furthermore,
there is no expression for this factor available for the real fluids. All these limited the use of the
theory.

In the studies of equilibrium properties, the real near-sphere and nonsphere compounds are
frequently described as flexible homonuclear chainlike molecules. One of these approaches is the

Ž . w xstatistical associating fluid theory SAFT 14–16 . It has been extensively tested against computer
w x w xsimulations 17,18 and experimental results 19–21 . In the theories of transport properties, however,

w xseldom have researchers considered the real fluids as chain molecules. Only Salim and Trebble 22
modified the interacting sphere model by introducing a multiple hard-sphere to the probability
function of molecular collision.

Ž .In this work, the real compounds are described as freely tangent Lennard–Jones chain LJC
molecules. A new equation for D is proposed here based on the molecular dynamics simulationsHSC

w xcarried out by Smith et al. 23 . An expression for D is also obtained on the basis of the frictionLJC
w xcoefficient of the LJ fluid given by Ruckenstein and Liu 8 . The equation is used to correlate the

self-diffusion coefficients for 22 compounds. The correlated results are compared with that of the
Ž . w xrough Lennard–Jones RLJ 8 type equation.

2. Background theory

2.1. Self-diffusion coefficient equation for the HSC fluid

Self-diffusion coefficient for a dilute gas composed of hard spheres is given by:
1r23 kT

D s . 1Ž .0 2 ž /8rs p m

For dense gases, the well-known Enskog equation for a hard-sphere fluid is:
1r2D 3 kT 10

D s s , 2Ž .E 2 ž /g s 8rs p m g sŽ . Ž .
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Fig. 1. Reduced self-diffusion coefficients of the hard-sphere chain fluids. Symbols refer to the MD simulation results; solid
lines refer to the fitted values.

where the radial distribution function at contact can be calculated from Carnahan–Starling equation
w x24 :

3
g s s 1y0.5h r 1yh . 3Ž . Ž . Ž . Ž .

Ž .Comparing with the molecular dynamics simulation data, Eq. 2 is valid only at low densities. In
the moderate- and high-density ranges, a correction factor have been obtained using the molecular

w xdynamics simulation data by Ruckenstein and Liu 8 . Then the self-diffusion coefficient of hard-sphere
fluid can be expressed as:

D sD f r
U sD f r

U rg s , 4Ž . Ž . Ž . Ž .HS E 0

where:

f r
U s1q0.94605r

U1.5 q1.4022 r
U3 y5.6898 r

U5 q2.6626r
U7. 5Ž . Ž .

For a chain molecule containing N hard-spheres of diameter s and mass m, we assumed its
self-diffusion coefficient at dilute gas condition is the same as that of a single hard-sphere of diameter

X X w xs and mass m 22 , i.e.:
1r23 kT

D s , 6Ž .X0C X 2 ž /p m8rs

where s
X and mX can be calculated as follows:

s
X3 sNs 3, 7Ž .

mX sNm , 8Ž .
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Table 1
Database of the self-diffusion coefficients for the compounds studied in this work

aŽ . Ž .No. Compounds Formula M T K P MPa Data Ref.

w x1 methane CH 16.043 110.0–323.2 1.5–221.6 264
w x2 n-hexane C H 86.178 223.2–333.2 0.1–393.8 276 14
w x3 n-hexadecane C H 226.448 298.2–348.2 0.1–279.2 2816 34
w x4 isopentane C H 72.151 298.0–328.0 0.1–200.0 295 12
w x5 cyclopentane C H 70.135 298.0–328.0 0.1–200.0 295 10
w x6 cyclohexane C H 84.162 313.0–383.0 0.1–214.0 306 12
w x7 ethylene C H 28.054 123.2–298.2 2.0–272.2 312 4
w x8 carbon disulfide CS 76.131 268.2–313.2 0.1–385.1 322
w x9 benzene C H 78.114 303.0–433.0 0.1–454.4 336 6
w x10 toluene C H 92.134 248.2–348.2 0.1–360.8 347 8

bw x11 chloromethane CH Cl 50.488 186.0–440.0 sat–200.0 353
bw x12 dichloromethane CH Cl 84.933 186.0–406.0 sat–200.0 352 2
bw x13 chloroform CHCl 119.378 217.0–397.0 sat–150.0 353

w x14 carbon tetrachloride CCl 153.823 283.2–328.2 0.1–147.5 364
w x15 fluoromethane CH F 34.033 153.0–440.0 sat–200.0 373
w x16 fluoroform CHF 70.014 142.0–433.0 sat–200.0 383
w x17 perfluorocyclobutane C F 200.028 323.0–473.0 5.0–190.0 394 8
w x18 chlorotrifluoromethane CClF 104.459 303.2–348.2 3.7–188.4 403

Ž . w x19 tetramethylsilane Si CH 88.224 298.0–373.0 4.5–450.0 333 4
w x20 pyridine C H N 79.101 303.2–423.2 0.1–500.0 415 5

bw x21 acetonitrile C H N 41.053 253.2–343.2 0.1–303.6 422 3
c cw x w x22 carbon dioxide CO 44.011 223.0–450.0 1.0–200.0 43 442

aWhere sat refers to the saturated pressure.
b w xDensities were estimated by the Hankinson–Brobst–Thomson method 45 .
c w xDensities were calculated from the equation given by Pitzer and Schreiber 46 .

Ž . Ž .which preserve the total volume and mass of molecules. From Eqs. 6 – 8 , the following equation
can be obtained:

1r23s kT
D s , 9Ž .0C U 1r6 ž /8r N p m

where:

r
U srNs 3, 10Ž .

Analogous to the self-diffusion coefficient equation for a hard-sphere fluid, the self-diffusion
coefficient of hard-sphere chain fluid can be expressed as:

D sD F N ,rU rg s , 11Ž . Ž . Ž .HSC 0C

where the radial distribution function at contact should be the value of the hard sphere chain fluid. In
this work, it is replaced by the value of the hard sphere fluid for simplification, and is calculated from

Ž .Eq. 3 . The volume fraction h is defined as:
p p

U 3hs r s rNs . 12Ž .
6 6
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Ž U. Ž .The correction function F N,r in Eq. 11 can be obtained by using MD simulation results.
w xSmith et al. 23 used equilibrium molecular dynamics to simulate fluids containing molecules

modeled as chains of tangent hard spheres. The self-diffusion coefficients are calculated for chains of
length 2, 4, 8, and 16 at the reduced densities r

U ranging from 0.191 to 0.955 using a mean-square
w xdisplacement approach. By analyzing the MD simulation data of Smith et al. 23 , we found the

Ž U.function F N,r has the form:

2Ny1 Ny1
U U U UF N ,r s f r exp y0.06356 Ny1 y0.05212 r y1.9709 r .Ž . Ž . Ž . ž / ž /N N

13Ž .

Ž .When the chain length N equals to 1, Eq. 11 reduces to the self-diffusion coefficient equation for
w x Ž .a hard-sphere fluid. For the MD simulation data given by Smith et al. 23 , Eq. 11 represents the

self-diffusion coefficients for the HSC fluid of length Ns2, 4, 8, and 16 with the average absolute
Ž .deviation AAD of 3.95%. Fig. 1 presents the simulation data along with the calculated values of Eq.

Ž .11 . From Fig. 1, one can see that the self-diffusion coefficient equation obtained in this work can
give good results in all the ranges of densities.

Table 2
The parameters of the LJC equation and the average absolute deviations from the LJC equation and the RLJ equation

Ž . Ž .No. Compounds N s nm ´ rk K NDP AAD%LJ LJ

Present RLJ

1 methane 1.081 0.3630 103.30 59 2.24 2.09
2 n-hexane 2.021 0.4524 199.48 59 2.29 3.34
3 n-hexadecane 4.409 0.7593 0.37 25 1.83 2.45
4 isopentane 1.164 0.5087 469.34 22 5.71 5.71
5 cyclopentane 1.365 0.4565 473.24 21 4.29 4.37
6 cyclohexane 1.356 0.5027 316.12 39 2.06 2.13
7 ethylene 1.562 0.3563 86.03 63 4.61 6.00
8 carbon disulfide 2.071 0.3616 68.25 29 0.97 1.07
9 benzene 1.667 0.4468 160.42 35 4.14 4.37

10 toluene 2.002 0.4509 107.66 54 2.26 3.20
11 chloromethane 2.608 0.3507 10.17 42 3.32 2.63
12 dichloromethane 2.851 0.5369 0.11 43 4.47 6.30
13 chloroform 2.572 0.4246 10.39 39 3.36 3.97
14 carbon tetrachloride 2.115 0.4362 93.11 27 2.45 2.68
15 fluoromethane 2.162 0.4678 0.12 57 6.40 7.56
16 fluoroform 2.378 0.4825 0.17 75 3.70 5.32
17 perfluorocyclobutane 1.292 0.5429 132.38 59 3.70 3.74
18 chlorotrifluoromethane 1.005 0.4631 254.14 66 1.90 1.88
19 tetramethylsilane 2.526 0.4290 147.18 42 4.56 6.52
20 pyridine 1.899 0.4973 9.34 55 8.04 9.10
21 acetonitrile 2.705 0.4333 1.16 65 2.22 6.52
22 carbon dioxide 1.001 0.3660 235.56 105 7.29 7.52

total 1081 3.72 4.48



( )Y.-X. Yu, G.-H. GaorFluid Phase Equilibria 166 1999 111–124116

2.2. Self-diffusion coefficient equation of the LJC fluid

w xThe relationship between the self-diffusion coefficient and the friction coefficient 25 is:

DskTrj . 14Ž .
w xAccording to Rice and Gray 25 , the friction coefficient of a LJ fluid can be written as

j sj qj , where the hard core friction coefficient, j , can be calculated from the self-diffusionLJ HS a HS

coefficient of hard-sphere fluid:

kT g sŽ .
j skTrD s , 15Ž .HS HS UD f rŽ .0

and the attractive friction coefficient, j , can be expressed in terms of the intermolecular attractivea
Ž . Ž . w xpotential, u r , and the radial distribution function, g r , through the following equation 8,25 :

1r2
`p mb rŽ .

3j sy s U s G s d s, 16Ž . Ž . Ž .Ha 2
02 2pŽ .

Ž . Ž . Ž . Ž .where U s and G s are the spatial Fourier transforms of u r and g r , respectively. Using the
w xnumerical data on the radial distribution function of the LJ fluid, Ruckenstein and Liu 8 found that

the attractive friction coefficient of the LJ fluid can be approximately written as:
kT a1

j s , 17Ž .a U1.5D T0

where a is a constant which has a value of 0.4.1

Fig. 2. Self-diffusion coefficients as a function of temperature and pressure for ethylene. solid line refers to the results of the
LJC equation; dashed line refers to the results of the RLJ equation; Symbols refer to the experimental values: ', 123.15 K;
^, 173.15 K; B, 223.15 K; e, 273.15 K; l, 298.15 K.
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The self-diffusion coefficient equation of a LJ fluid can be obtained using the EHSD method.
Various expressions have been obtained theoretically for the EHSD s . They have been tested using ae

w xlarge number of MD simulation data by Ruckenstein and Liu 8 . The Boltzmann EHSD with the
w xparameters given by Ben-Amotz and Herschbach 9 leads to the best agreement with the diffusion

data of the LJ fluid. The expression of Boltzmann EHSD is:
y1r6U 1r2T

U U
s T s1.1532 1q . 18Ž . Ž .B ž /0.527

The EHSD is calculated by:
y1r6U 1r2T

U U
s ss s T s1.1532s 1q . 19Ž . Ž .e LJ B LJ ž /0.527

Therefore, the hard core friction coefficient for the LJ fluid can be calculated by replacing s in
Ž .Eq. 15 by the EHSD s . The equation for self-diffusion in the LJ Fluid can be obtained from Eqs.e

Ž . Ž . Ž .14 , 15 and 17 , i.e.:

kT
D s . 20Ž .LJ kT g s aŽ .e 1

qU U1.5ž /D f rŽ . T0

For the LJC fluid, the friction coefficient can be modified as:

j sj qj qj sj qj , 21Ž .LJC HS C aC HSC aC

where j can be obtained from the equation for the self-diffusion in the HSC fluid, i.e.:HSC

kT g sŽ .
j skTrD s . 22Ž .HSC HSC UD F N ,rŽ .0C

Assuming the attractive friction coefficient of a LJC fluid can be obtained from that of the LJ fluid
Ž .by replacing D in Eq. 15 by D , the following expression can be obtained:0 0C

kT a1
j s . 23Ž .aC U1.5D T0C

Ž . Ž . Ž .From Eqs. 14 , 21 – 23 , the equation of the self-diffusion coefficient for the LJC fluid can be
obtained:

kT
D s . 24Ž .LJC kT g s aŽ .e 1

qU U1.5ž /D F N ,rŽ . T0C

Ž . Ž . Ž U. Ž .The radial distribution function, g s , is given by Eq. 3 and F N,r by Eq. 12 . It should bee
Ž . Ž . Upointed out that in Eqs. 3 and 12 , the reduced density r should be calculated by replacing s in

Ž .Eq. 10 by s . Therefore:e

3U U U3 3r srNs srNs s T . 25Ž . Ž .e LJ B
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Ž .The comparison between the present LJC Eq. 24 and the RLJ equation will be made in Section 3
by using the experimental self-diffusion coefficients of real compounds. The RLJ equation of

w xRuckenstein and Liu 8 is:

A kTD
D sA D s . 26Ž .RLJ D LJ 8 g s aŽ .e 11r22rs p mkT qŽ .e U U1.53 f rŽ . T

3. Results and discussion

Because we did not find any simulation data for Lennard–Jones chain fluid, the LJC equation has
not been tested against molecular dynamics simulation data. In this work, a certain amount of
self-diffusion coefficient data for the real polyatomic compounds have been used to test the LJC
equation. The data sources, the temperature and pressure ranges of the self-diffusion coefficients for
22 substances are listed in Table 1. The substances studied include paraffin, halogenated paraffins,
olefins, aromatics, heterocycles and nitriles. The substances were chosen only when self-diffusion
coefficients at different temperatures and pressures are available. Because the density data of
chloromethane, dichloromethane, chloroform and acetonitrile are not available from the same

Fig. 3. Self-diffusion coefficients as a function of temperature and pressure for fluoroform. Solid lines refer to the results of
the LJC equation; dashed lines refer to the results of the RLJ equation; symbols refer to the experimental value: ^, 142 K;
', 208 K; I, 250 K; B, 291 K; e, 353 K; l, 433 K.
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reference as the self-diffusion coefficient, they were estimated by using the Hankinson–Brobst–
w xThomson method 45 .

The LJC equation contains three parameters: N, s and ´ . They can be determined fromLJ LJ

diffusion coefficient data by the least squares regress method. The obtained parameters along with the
AADs in the self-diffusion coefficient are listed in Table 2. The average absolute deviations is defined
as:

NDP1
cal exp exp< <AADs D yD rD =100%. 27Ž .Ž .Ý i i iNDP is1

Ž .As seen from Table 2, Eq. 24 provides accurate correlation for almost all the substances studied
in this work. For most compounds, the AAD is comparable to the experimental uncertainty. The total
AAD for 22 substances is 3.72%.

The LJC equation has been compared with the RLJ equation. The results of the RLJ equation were
calculated by the authors using three adjusted parameters: A , s and ´ . The three parameter RLJD LJ LJ

w xequation gives less deviations than the one or two parameter models 2,8 . The AADs of the RLJ
equation are also listed in Table 2. From Table 2, one can see that for spherical and near-spherical

Ž .molecules such as methane, carbon tetrachloride, etc. , the LJC equation and RLJ equation give
almost the same AAD, but for nonspherical chain molecules, the LJC equation gives better results.

In Fig. 2, the self-diffusion coefficients for ethylene at different temperatures are plotted against
pressure. At high temperature region, both the LJC and RLJ equations give good results, but when the

Fig. 4. Self-diffusion coefficients as a function of temperature and pressure for n-hexane. Solid lines refer to the results of
the LJC equation; dashed lines refer to the results of the RLJ equation; symbols refer to the experimental values: l, 223.15
K; ^, 298.15 K; B, 333.15 K.
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temperature becomes low and the pressure becomes high, the RLJ equation yields lower values
compared with the experimental values.

The self-diffusion coefficients as a function of temperature and pressure for fluoroform, n-hexane
and acetonitrile are shown in Figs. 3–5, respectively. As shown in these figures, The LJC equation
developed in this work can represent the experimental self-diffusion coefficients for nonspherical
molecules with good accuracy. The LJC equation often gives better results than that of the RLJ
equation for nonspherical polyatomic fluid.

Although the LJC equation with three adjustable parameters gives very accurate correlation results
for the substances considered, the values obtained for the energy parameter of n-hexadecane,
dichloromethane, fluoromethane, fluoroform, pyridine and acetonitrile are very small and unreason-
able. The values of the parameters greatly depend on the self-diffusion coefficient data used. In the
calculation, one can see that for the LJC fluid, the diffusion coefficient is much more sensitive to the
segment diameter s and the chain length N than to the segment energy parameter ´ . From theLJ LJ

w xresults of Ruckenstein and Liu 8 , the energy parameter should depend on the critical temperature in
w xa simple manner. Analogous to the LJ fluid, the relation obtained from viscosity data 45 is employed

to determine the energy parameter. Assuming the molecular energy is the sum of all the LJ segment
energies, one can obtain:

N ´ rk sT r1.2593. 28Ž . Ž .LJ c

The other two parameters should depend on the molecular size and shape.

Fig. 5. Self-diffusion coefficients as a function of temperature and pressure for acetonitrile. Solid lines refer to the results of
the LJC equation; dashed lines refer to the results of the RLJ equation; symbols refer to the experimental value: ^, 253.2 K;
', 283.2 K; I, 313.2 K; B, 343.2 K.
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Table 3
Calculated results from the LJC equation with two adjustable parameters

Ž . Ž . Ž .No. Compounds N s nm ´ rk K T K NDP AAD%LJ LJ c

1 methane 1.102 0.3547 137.20 190.4 59 3.02
2 n-hexane 2.021 0.4524 199.41 507.5 59 2.31
3 n-hexadecane 4.911 0.4784 116.74 722.0 25 5.83
4 isopentane 1.480 0.4817 247.03 460.4 22 5.93
5 cyclopentane 1.571 0.4469 258.65 511.7 21 4.42
6 cyclohexane 1.351 0.5026 325.34 553.5 39 2.06
7 ethylene 1.326 0.3653 169.12 282.4 63 5.06
8 carbon disulfide 1.846 0.3517 237.45 552.0 29 1.18
9 benzene 1.585 0.4414 281.66 562.2 35 4.22

10 toluene 1.813 0.4458 259.21 591.8 54 3.46
11 chloromethane 1.956 0.3278 169.01 416.3 42 3.33
12 dichloromethane 1.888 0.3627 214.51 510.0 43 8.33
13 chloroform 1.893 0.3923 225.01 536.4 39 4.52
14 carbon tetrachloride 2.017 0.4231 219.05 556.4 27 2.68
15 fluoromethane 1.369 0.3293 182.72 315.0 57 8.12
16 fluoroform 1.636 0.3430 145.28 299.3 75 5.36
17 perfluorocyclobutane 1.102 0.5510 279.95 388.5 59 4.08
18 chlorotrifluoromethane 1.000 0.4657 239.82 302.0 66 2.10
19 tetramethylsilane 2.533 0.4297 140.64 448.6 42 4.52
20 pyridine 1.634 0.4206 301.31 620.0 55 10.17
21 acetonitrile 2.303 0.3232 188.09 545.5 65 5.89
22 carbon dioxide 1.000 0.3655 241.48 304.1 105 7.29

total 1081 4.72

Table 3 listed the calculation results from the LJC equation with two adjustable parameters. In
w xTable 3, the critical temperatures were taken from Reid et al. 45 . From this table one can see that the

values for the parameters become more reasonable though the total AAD increases by 1.00%. The
diameters of the LJ segment are in the range of 0.3–0.5 nm. The big and long chain molecules have
big values of chain length N. These trends in the values for the parameters of the LJC equation make
good physical sense. The LJC equation with two parameters also provides accurate results for the
compounds studied. Considering the wide ranges of temperature and pressure, the calculation results
are satisfactory.

4. Conclusion

In this work, an expression for the diffusion coefficient of a hard-sphere chain fluid was obtained
w xby using the molecular dynamics simulations of Smith et al. 23 . Based on this expression, an

Ž .equation of self-diffusion coefficient for the tangent Lennard–Jones chain LJC fluid was developed
Ž .by the effective hard-sphere diameter EHSD method and including the soft friction coefficient. The

w xBoltzmann EHSD with the parameters obtained by Ben-Amotz and Herschbach 9 was adopted. The
real polyatomic substances were treated as freely tangent LJC molecules. The equation was used to
calculate the self-diffusion coefficients for 22 polyatomic substances over wide temperature and
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pressure ranges, and the total AAD is 3.72%. The equation have been compared with the rough LJ
Ž . w xRLJ equation given by Ruckenstein and Liu 8 . It gives better results than that of RLJ equation for
nonspherical polyatomic fluids. When the energy parameters was estimated from the critical tempera-
ture, it was found that the diffusion data for all compounds, including polar molecules, can also be
represented accurately with the LJ equation in which only two parameters had to be obtained from the
experimental data.

List of symbols
Ž .AAD Average absolute deviation defined by Eq. 27

A Translational-rotational factorD

D Self-diffusion coefficient, m2rs
Ž U. Ž .F N,r Correction function for HSC fluid defined by Eq. 13
Ž U. Ž .f r Correction function for HS fluid defined by Eq. 5
Ž . Ž .G s Spatial Fourier transforms of g r
Ž .g r Radial distribution function
Ž .g s Radial distribution function at contact

k Boltzmann constant
M Molecular mass, grmol
m Mass of a segment, kg
N Chain length
NDP Number of data points
R Universal gas constant, 8.3144 Jrmol K
s Parameter in Fourier transform
T Absolute temperature, K
TU Reduced temperature, TU skTr´

Ž . Ž .U s Spatial Fourier transforms of u r
Ž .u r Segment–segment potential, J

Greek Letters
Ž .a Parameter in Eq. 171

´ Lennard–Jones segment energy, J
h hsprs 3r6 for the HS fluid; hsprs 3r6 for the LJC and real fluids
r Number density, nmy3

r
U Reduced density, r

U srs 3 for the HS fluid, r
U srs 3 for the LJC and real fluidse

s Segment diameter, nm
s Effective hard-sphere diameter, nme

s
U Ratio of effective hard-sphere diameter and LJ segment diameterB

j Friction coefficient

Subscripts
a Attractive
B Boltzmann effective hard-sphere diameter
C Chain
c critical state
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E Enskog
e Effective hard-sphere diameter
HS Hard sphere
LJ Lennard–Jones
LJC Lennard–Jones chain
RLJ Rough Lennard–Jones
0 Hard-sphere fluid at very low gas densities
0C Chain fluid at very low gas densities

Superscripts
U Reduced quantity
cal Calculated value
exp Experimental value
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