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The self-di†usion coefficients for a dense Ñuid of particles interacting with a square-well potential are
described. The expression for self-di†usion coefficients obtained by the ChapmanÈEnskog method of solution
is corrected by the molecular dynamics simulation data. The structural data for the square-well Ñuid required
in the calculation are obtained from explicit analytic equations for the radial distribution function. The
corrected equation represents the self-di†usion coefficients with an average absolute deviation of 4.63% for the
square-well Ñuid. The results are compared with those of other expressions. In addition, the self-di†usion
coefficients for real Ñuids composed of simple, near spherical molecules are correlated using the square-well
potential, and acceptable agreement is obtained between the calculated and experimental di†usion data.

Introduction

Di†usion is caused by random molecular motion that leads to
complete mixing.1 It is important not only for chemical engi-
neers and chemists but also for life scientists, environmental
administrators and workers in many other Ðelds. Di†usion is
involved in the efficiency of mass transfer equipment, the dis-
persal of pollutants, the dyeing of wool, and the transport
phenomena in living cells.2 Several authors have investigated
the self-di†usion coefficients for real dense Ñuids interacting
according to hard-sphere (HS),3,4 square-well (SW)5 and
Lennard-Jones (LJ)5h7 potentials. In these studies, molecular
dynamics simulation data were used to develop the self-
di†usion coefficient equations.

The square-well (SW) Ñuid is the simplest one possessing
the basic characteristics of a real Ñuid. It has proved to be an
excellent model for a liquid in which the internal degrees of
freedom of the individual atoms are not important. Longuet-
Higgins and Valleau8 were the Ðrst to use the square-well
model to describe the self-di†usion coefficients of a dense Ñuid.
Davis, Rice and Sengers (DRS)9 developed a transport equa-
tion for the singlet distribution function, which is essentially a
modiÐcation of the equation derived by Enskog for a dense
hard-sphere Ñuid. This model was extended to a binary
mixture by McLaughlin and Davis.10 Brown and Davis11
derived expressions for the self-di†usion coefficients for
smooth, rough and loaded hard-spheres interacting according
to the square-well potential. They found that replacing a
smooth hard-sphere core with a rough sphere core lowered
the square-well results for the self-di†usion coefficient. Scarfe
et al.12 compared the results of square-well and square-well
rough sphere models with the experimental data for methane.
A little improvement was found for the square-well rough
sphere model. The model proposed by Davis, Rice and
Sengers9 admits only partial collisions at each initial separa-
tion, such that momentum transfer at the outer edge of the
well and at the core are uncorrelated. This model is also
referred to as the partial collision model.13 The partial colli-
sion model is inappropriate at low densities since it does not
yield the Boltzmann limit or a reasonable approximation to it.
Furthermore, it is not appropriate at high densities since it
does not predict the correct temperature dependence. Dufty et
al.13 compared the self-di†usion coefficients from three theo-
retical models, i.e. the partial collision model, the complete

collision model and the repeat ring approximation theory,
with the molecular dynamics simulation data at low and mod-
erate densities, and found that only the last one gives accept-
able predictions. However, it is not convenient to use because
of its complexity and the obligatory numerical integrations
involved. Much e†ort should be made to generalize the repeat
ring kinetic theory to liquid densities.

Wilbertz et al. (WMBL)14 developed a kinetic theory
similar to the DRS theory. They used their theory to calculate
the di†usion coefficient for the SW Ñuid and compared the
results to those of computer simulations. The WMBL theory
makes reasonable predictions only at intermediate densities.
The DRS theory9 is not entirely satisfactory because, in
general, energy conservation is not obeyed. This problem is
avoided in the SW theory of Karkheck et al.,15 using the
method of maximization of entropy. The theory of Karkheck
et al.15 exhibits energy conservation, satisÐes an H theorem,16
and leads to the correct equilibrium solutions. Yet, already the
fulÐllment of all conservation laws renders this theory more
satisfactory.14 Due to the complications caused by the Ðnite
time-length of collisions and the presence of many-body inter-
actions, the present state of the kinetic theory of transport
processes in dense Ñuids is unsatisfactory, despite many
valiant attempts.14 Hence computer simulations are carried
out for model Ñuids. It is very important for guiding new
simulations to examine how well di†erent model Ñuids simu-
late real Ñuid behavior. The purpose of this work is to estab-
lish an accurate expression for the self-di†usion coefficient for
the SW Ñuid by modifying the DRS theory with molecular
simulation data,17h19 and examine whether the SW model Ðts
well to real Ñuids.

Theory

Self-di†usion coefficient from the Chapman–Enskog method

The pair potential for a square-well Ñuid is deÐned by

u(r) \
7O
[e
0

r O p
p \ r \ jp
r P jp

(1)

where r is the radial coordinate, p is the diameter of the hard
core, jp is the diameter of the surrounding well, and e is the
magnitude of the attractive part of the potential. The well
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width, j, is set to 1.5 throughout this paper, because this value
provides a good compromise between Ðtting second virial
coefficient data and critical temperature and volume for real
Ñuids.20 Furthermore, this value was adopted in most of the
molecular dynamics simulations, and with a constant value of
j the calculation of radial distribution functions is consider-
ably simpler.

The theory involved in the derivation of the transport equa-
tion for a dense gas of hard-sphere molecules is a modiÐcation
of the corresponding dilute gas equation to which the
ChapmanÈEnskog method of solution may be applied. The
same method was applied to the square-well Ñuid by Davis et
al.9,10 To evaluate the collision integral, one has to deal with
hard-core collisions and three additional impulsive collision
processes due to the presence of the attractive square-well part
of the potential. The self-di†usion coefficient obtained by
using the ChapmanÈEnskog method of solution is9,10

D\
3

8op2
AkT
pm
B1@2

[g(p)] j2g(jp)N]~1 (2)

where o is the number density of the Ñuid, m is the mass of the
particle, T is the absolute temperature, k is the Boltzmann
constant, g(p) and g(jp) are the equilibrium radial distribution
functions evaluated at the points p ] 0 and jp ] 0, respec-
tively, and N is expressed as

N\ exp
A e
kT
B

[
e

2kT
[ 2J (3)

J \
P
0

=
y2(y2] e/kT )1@2 exp([y2) dy (4)

Eqn. (2) was also obtained by LonguetÈHiggins and Valleau8
under the assumption that the velocity autocorrelation func-
tion of a particular particle was an exponentially decaying
function of time. So in the case of self-di†usion, the ChapmanÈ
Enskog and Longuet-Higgins and Valleau methods give the
same result.

For a given component at a given density and temperature,
eqn. (2) requires knowledge of the radial distribution functions
g(p) and g(jp) for the square-well Ñuid. In this work, the
expression for g(p) was obtained from the Ðrst-order pertur-
bation term of the pressure equation as follows21h23

g(p)\ [3
A
I] g

dI
dg
B

] j3gHS(jp) (5)

where

I\
P
1

j
gHS(x)x2 dx (6)

g \ po*/6 \ pop3/6 (7)

In these expressions, x \ r/p is the reduced distance between
two particles, and gHS(x) is the radial distribution function of
the hard-sphere Ñuid at a speciÐed distance and density.

By using the analytic expression for the radial distribution
function of hard spheres of Chang and Sandler,22,23 the inte-
gral I of eqn. (6), and its Ðrst derivative, can be obtained ana-
lytically and as explicit functions of g and j :
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The explicit analytic expressions for and (i\ 1, 2 and 3)a
i

t
ican be found in appendix A of Tavares et al.24 For j \ 1.5,

the value of the radial distribution function for the hard-
sphere Ñuid at jp can be determined from a correlation of

Monnery et al.25

gHS(jp) \ 0.999 48] 0.824 04g [ 3.469 76g2 (10)

This correlation matches the Monte Carlo (MC) simulation
results of Barker and Henderson26 with an overall average
absolute deviation (AAD) of 0.35% over a reduced density
range of 0.2 O o* O 0.9.

The radial distribution functions for the square-well Ñuid at
p ] 0 are plotted as a function of reduced density in Fig. 1.
From Fig. 1 one can see that the radial distribution functions
calculated from eqn. (5) are in good agreement with the MC
results27,28 except in the reduced density range from 0.1 to 0.4
at T * \ 1.5. In this region, eqn. (5) slightly underestimates the
radial distribution functions for the square-well Ñuid.

The radial distribution function values for the square-well
Ñuid at jp ] 0 can be approximated by the following equa-
tion :

g(jp) \ gHS(jp) exp(a/T * ] b/T *2) (11)

where T * \ kT /e. The values of a and b were determined to
be [0.4317 and [0.1177, respectively, by minimizing the
deviations between the predicted values from eqn. (11) and the
MC simulation values of Henderson et al.,27 reproducing the
MC values with the AAD of 2.56%. Fig. 2 shows that the
calculated g(jp) are in good agreement with the MC results at
di†erent reduced temperatures and densities.

Fig. 1 Radial distribution function for the square-well Ñuid at p ] 0.
Symbols are the MD results : data of Henderson et al.27 at=,
T * \ 4.0 ; data of Tavares et al.28 at T * \ 4.0 ; data of TavaresK È,
et al.28 at T * \ 1.5. Solid lines are the values calculated with eqn. (5).

Fig. 2 Radial distribution function for the square-well Ñuid at
jp ] 0. Symbols are the MD results of Henderson et al. :27 =
T * \ 4.0 ; T * \ 2.0 ; T * \ 1.333 ; T * \ 1.0 ; T * \ 0.8.|, @, ), +,
Solid lines are the results calculated with eqn. (11).
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In order to simplify the calculation, the integral J can be
approximated by the following algebraic equation :25

J \
0.5] 0.283 04/T *

1 ] 0.153 60/T *
(12)

With the radial distribution function values determined
from eqns. (5)È(11) and Y from eqns. (3) and (12), eqn. (2) can
now be used to calculate the self-di†usion coefficient for the
square-well Ñuid.

Correction to the self-di†usion coefficient

As pointed by Dufty et al.,13 eqn. (2) is not appropriate to
describe the self-di†usion coefficient for a square-well Ñuid at
low and high densities. Therefore, it was corrected by using
the MD simulation data17h19 in this paper. The friction coeffi-
cient for a square-well Ñuid can be written as m \ mR ] mS .9,29
Then the self-di†usion coefficient can be expressed as :

D\ kT /(mR ] mS) (13)

where represents the friction coefficient due to the hard-mRcore repulsive potential, and represents that due to themSattractive one. The friction coefficient can be obtained frommRthe expression for the self-di†usion coefficient of a hard-sphere
Ñuid.

For a hard-sphere Ñuid, the self-di†usion coefficient can be
obtained from the well-known Enskog equation :

DE \
3

8op2
AkT
pm
B1@2 1

gHS(p)
(14)

where gHS(p) is the radial distribution function at contact for
the hard-sphere Ñuid. It can be determined by the CarnahanÈ
Starling30 expression :

gHS(p)\
1 [ 0.5g
(1[ g)3

(15)

From eqn. (14) one can obtain the hard-core contribution to
the friction coefficient, i.e.

mRE\ kT /DE \ 83op2(pmkT )1@2gHS(p) (16)

Eqn. (2) can be rewritten as

D\
kT

83op2(pmkT )1@2[g(p)] j2g(jp)N]
(17)

If the expression for the friction coefficient due to the hard
core for the hard-sphere Ñuid is assumed to be similar to that
for the square-well Ñuid, the friction coefficient due to the
attractive potential for the square-well Ñuid can be obtained
from eqns. (13), (16) and (17) :

mS \ 83op2(pmkT )1@2j2g(jp)N (18)

As we know, the Enskog equation is valid only at low den-
sities. A correction factor must therefore be introduced to
obtain accurate results for the hard-sphere Ñuid in moderate-
and high-density ranges :

mRHS \ mRE fR(o*)\ 83op2(pmkT )1@2gHS(p) fR(o*) (19)

The correction function in eqn. (19) can be determinedfR(o*)
by using MD simulation results for the hard-sphere Ñuid. On
the basis of MD simulations, Speedy4 proposed the following
equation for the hard-sphere Ñuid :

DHS \ D0(1[ o*/1.09)(1] 0.4o*2 [ 0.83o*4) (20)

where is the self-di†usion coefficient at very low densities,D0

D0\
3

8op2
AkT
pm
B1@2

(21)

From eqn. (20), the friction coefficient due to the hard-core
repulsive potential can be obtained as

mRHS \
83op2(pmkT )

[1[ (o*/1.09)](1] 0.4o*2 [ 0.83o*4)
(22)

Comparing eqn. (19) with eqn. (22), the following expression
can be obtained for the correction function fR(o*) :

fR(o*) \
(1 [ g)3

(1 [ 0.5g)(1[ o*/1.09)(1] 0.4o*2[ 0.83o*4)
(23)

Assuming that the correction function for the hard-fR(o*)
sphere Ñuid is the same as that for the square-well Ñuid, the
friction coefficient due to the hard-core repulsive potential for
the square-well Ñuid can be expressed as :

mR \ 83op2(pmkT )1@2g(p) fR(o*) (24)

Because eqn. (2) does not predict the correct temperature
dependence, a correction function must also be introduced for
the attractive friction coefficient, i.e.

mS \ 83op2(pmkT )1@2j2Ng(jp) fS(o*) (25)

By using the MD results of Alley and Alder17 and of Michels
and Trappeniers,18,19 the correction function can befS(o*)
determined. It has the form:

fS(o*) \ 70.771o*3[ 58.971o*2 ] 19.903o* [ 1.3708 (26)

Substituting eqns. (24) and (25) into eqn. (13), the corrected
self-di†usion coefficient for the square-well Ñuid can be
obtained :

D\
3

8op2
AkT
pm
B1@2

[g(p) fR(o*) ] j2Ng(jp) fS(o*)]~1 (27)

Comparison with simulated data
With the equilibrium radial distribution functions g(p) and
g(jp) calculated from eqns. (5) and (11), the self-di†usion coef-
Ðcient can be obtained from eqn. (27) for a square-well Ñuid. A
comparison of the corrected self-di†usion coefficient, eqn. (27),
with computer simulation results18 at T * \ 1.3158, 2.0 and
5.0 is given in Fig. 3. The reduced self-di†usion coefficient for
a square-well Ñuid used in this paper is deÐned as

D* \ Dop2(m/kT )1@2 (28)

From Fig. 3, one can see that the corrected self-di†usion coef-
Ðcient, eqn. (27), agrees remarkably well with the simulation
data. In Figs. 4 and 5, the deviations of the self-di†usion coef-
Ðcients obtained with eqn. (27) are plotted against reduced
density and reduced temperature, respectively. Big discrep-

Fig. 3 Reduced self-di†usion coefficient as a function of reduced
temperature and density for the square-well Ñuid. Symbols are the
MD results of Michels and Trappeniers :18 T * \ 5.0 ; T * \ 2.0 ;=, |,

T * \ 1.316. Solid lines are the results calculated with eqn. (27).>,

Phys. Chem. Chem. Phys., 2001, 3, 437È443 439



Fig. 4 Deviation of the self-di†usion coefficient obtained with eqn.
(27) vs. reduced density for the square-well Ñuid. Symbols are as
follows : Alley and Alder ;17 Michels and Trappeniers ;18>, K, +,
Michels and Trappeniers.19

ancies can be observed in the high-density and low-
temperature regions, respectively. All the deviations are within
18% over the density range from o* \ 0.02 to o* \ 0.9 and
the temperature range from T * \ 0.79 to T * \ 8.84.

Recently, Liu et al.5 proposed an expression for the self-
di†usion coefficient of a SW Ñuid. The proposed expression
takes the form:

D* \ 0.211 57 exp
A
[

0.75o*

1.2588[ o*

B
exp
A
[

0.810 61

T *

B
(29)

Table 1 shows the average absolute deviations (AAD) from
the corrected self-di†usion coefficient equation [eqn. (27)], the
original equation [eqn. (2)] obtained from the ChapmanÈ
Enskog method, and eqn. (29). The average absolute deviation

Fig. 5 Deviations of the self-di†usion coefficient obtained with eqn.
(27) vs. reduced temperature for the square-well Ñuid. The meaning of
the symbols is the same as in Fig. 4.

(AAD) used in this work is deÐned as

ADD\
1

NDP
;
i/1

NDP
o (D

i
cal [ D

i
exp)/D

i
exp o] 100% (30)

where NDP is the number of data points, is the calculatedD
i
cal

self-di†usion coefficient, and represents the MD simula-D
i
exp

tion data or experimental measured data.
At lower densities, 0\ o* O 0.2, both eqns. (27) and (29)

give reasonably good results, while eqn. (2) produces large dis-
crepancies, as can be seen from Table 1. At moderate densities,
0.25O o* O 0.5, all three models describe the simulation
data17h19 with acceptable deviations. At high densities,
0.6O o* O 0.9, the corrected self-di†usion coefficient equation,
eqn. (27), continues to yield a good approximation, while there
are very large discrepancies for the other models. Fig. 6 shows
the same trend for the self-di†usion coefficients calculated
from the three models at T * \ 1.5. The original equation, eqn.
(2), underestimates the self-di†usion coefficients at lower den-
sities and overestimates them at higher densities. The expres-
sion proposed by Liu et al.5 also overestimates the
self-di†usion coefficients at higher densities, but it gives
acceptable results at lower and moderate densities. The equa-
tion obtained in this work gives excellent agreement with the
MD simulation results. From Table 1 and Fig. 6, one can see
that the corrected equation is more accurate than the expres-
sion of Liu et al.5

The expression of Liu et al.5 relies on a tenuous analysis of
the relation between hard-sphere and square-well Ñuid behav-
ior. In their expression, the e†ects of temperature on the self-
di†usion coefficient for the SW Ñuid at all densities are of the

Fig. 6 Comparison of simulated self-di†usion coefficient with the
results of di†erent models for the square-well Ñuid at T * \ 1.5.
Symbols are the MD simulation results : ref 18 ; ref. 19. Solid|, >,
line represents the results obtained with eqn. (27) ; dotted line rep-
resents the results of Liu et al. ;5 and dash-dot line denotes the results
obtained with eqn. (2).

Table 1 Calculated results with the three models for the square-well Ñuids in di†erent density ranges (T * \ 0.79È8.84)

AAD (%)

Density range NDP Eqn. (27) Eqn. (2) Eqn. (29)

0 \ o* O 0.1 11 3.43 30.04 9.21
0.125O o* O 0.2 9 3.65 15.96 2.41
0.25O o* O 0.3 7 2.09 5.20 2.10
0.35O o* O 0.4 7 5.87 8.86 3.38
0.45O o* O 0.5 10 1.86 15.42 5.67
o* \ 0.6 6 4.40 38.85 17.49
o* \ 0.7 7 6.42 76.84 31.27
0.7071O o* O 0.8 15 6.98 119.57 38.11
0.86O o* O 0.9 24 5.17 191.50 37.11
0 \ o* O 0.9 96 4.64 82.16 20.88
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Table 2 Data sources, temperature and pressure ranges of the real substances studied in this work

No. Substance Formula M/g mol~1 T /K P/MPa Ref.

1 Argon Ar 39.948 79.5È325.2 0.1È200.0 31, 32
2 Krypton Kr 83.800 199.6È293.0 6.5È11.10 33, 34
3 Xenon Xe 131.290 203.0È343.0 0.1È10.20 35
4 Carbon disulÐde CS2 76.131 268.2È313.2 0.1È385.1 36
5 Methane CH4 16.043 110.0È323.2 1.5È221.6 37
6 Carbon tetrachloride CCl4 153.823 283.2È328.2 0.1È147.5 38
7 Fluoromethane CH3F 34.033 153.0È440.0 SatÈ200.0 39
8 Chloromethane CH3Cl 50.488 186.0È440.0 SatÈ200.0 40
9 ChlorotriÑuoromethane CClF3 104.459 303.2È348.2 3.7È188.4 41

10 Isopentane C5H12 72.151 298.0È328.0 0.1È200.0 42
11 Sulfur hexaÑuoride SF6 146.050 240.0È370.0 SatÈ182.7 43, 44
12 Cyclopentane C5H10 70.135 298.0È328.0 0.1È200.0 42
13 Cyclohexane C6H12 84.162 313.0È383.0 0.1È214.0 45
14 Trimethylamine (CH3)3N 59.111 273.0È375.0 10.0È200.0 46

same magnitude, and the density dependence of is com-DSW*parable with that for the HS Ñuid over the entire density
range. But this is not the case for the SW Ñuid. It is known
from molecular dynamics18,19 that if an attractive potential
with a square-well shape is superimposed on the hard core,
the result is a Ðrst-order density dependence of ando*DSW*there is a concave shape in the function at o \ 0.2. Theo*DSW*density dependence of is comparable with that for the HSDSW*Ñuid only in the density range of 0.2 \ o* \ 0.5. Therefore,
the expression of Liu et al.5 is valid only in this density range,
as can be seen from Table 1 and Fig. 6. This limitation shows
that the expression of Liu et al.5 is not adequate to describe

Fig. 7 The logarithm of the self-di†usion coefficient of xenon as a
function of density at 343 K. Symbols represent the experimental
data35 and solid line denotes the values calculated with eqn. (27).

the SW Ñuid behavior. In our corrected eqn. (27), the e†ects of
temperature on the radical distribution functions are con-
sidered, and the results are more reasonable over the entire
density range. All these facts show that our treatment is pref-
erable to that of Liu et al.5

Calculation of real systems
The parameters of the corrected self-di†usion coefficient equa-
tion [eqn. (27)] were then Ðtted to the data of real systems.
The data sources, and the temperature and pressure ranges of
the self-di†usion coefficients for the 14 substances studied in
this work are listed in Table 2. In Table 2, P is the pressure
and M is the molar mass. The density data of the substances
are from the same references as the self-di†usion coefficients.
The substances studied in this work are composed of simple
and near spherical molecules, because the square-well poten-
tial model is not suitable for non-spherical or polar systems.
They were chosen only when self-di†usion coefficients at dif-
ferent temperatures and pressures are available.

The corrected self-di†usion coefficient equation [eqn. (27)]
contains two parameters : p and e. They can be determined
from di†usion coefficient data by the least squares regression
method. The obtained parameters along with the AADs in the
self-di†usion coefficient are listed in Table 3. As seen from
Table 3, eqn. (27) provides acceptable correlation for all the
substances studied in this work, and the AADs for the 14 sub-
stances are within 10%. These results are a signiÐcant
improvement over those of the HS model, and show that the
attractive part of the intermolecular potential has a remark-
able inÑuence on the di†usion coefficient. The AADs in Table
3 from the SW model are bigger than those of LJ and

Table 3 Calculated results with the corrected self-di†usion coefficient equation [eqn. (27)] for real systems

No. Substance p/nm (e/k)/K NDP AAD (%)

1 Argon 0.3196 76.9 56 7.55
2 Krypton 0.3459 56.5 40 9.80
3 Xenon 0.3674 106.5 71 7.44
4 Carbon disulÐde 0.4315 69.0 29 4.06
5 Methane 0.3360 102.0 59 6.46
6 Carbon tetrachloride 0.5299 119.2 27 7.96
7 Fluoromethane 0.3327 181.1 57 6.56
8 Chloromethane 0.3765 229.0 42 7.28
9 ChlorotriÑuoromethane 0.4370 137.9 66 3.33

10 Isopentane 0.5402 100.1 22 8.75
11 Sulfur hexaÑuoride 0.4536 124.5 43 6.85
12 Cyclopentane 0.5150 100.2 21 6.59
13 Cyclohexane 0.5530 100.2 39 9.84
14 Trimethylamine 0.4953 46.0 23 8.54
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Lennard-Jones chain (LJC)7 models. The LJ and LJC models
give AADs within 8% for all the substances studied in this
work.

Comparison of the calculated results with the experimental
data for xenon35 at 343 K is plotted in Fig. 7. The corrected
self-di†usion coefficient equation [eqn. (27)] represents the
experimental data quite well in the whole density range for
xenon at 343 K. The logarithm of the self-di†usion coefficient
for methane as a function of temperature and pressure is
shown in Fig. 8. In the high temperature region, the corrected
self-di†usion coefficient equation gives good results, but when
the temperature becomes low and pressure becomes high, eqn.
(27) overestimates the self-di†usion coefficient for methane.
This trend is di†erent from that of the LJ and LJC models. At
high density, the LJ and LJC models generally underestimate
the self-di†usion coefficient for real Ñuids. However, the absol-
ute deviations at high density from the LJ and LJC models
are smaller than those of the SW model. The LJC model gen-
erally gives the best result among the three models. Consider-
ing the wide ranges of temperature and pressure, the
calculation results of the SW model for these substances are
satisfactory.

From the calculation of the real systems, we found that the
self-di†usion coefficient is much more sensitive to the hard-
core diameter parameter p than to the well depth parameter e.
The hard-core diameter parameter p should represent an
equivalent molecular size of real substances. In Fig. 9, the
hard-core diameter parameter listed in Table 3 is plotted

Fig. 8 The logarithm of the self-di†usion coefficient of methane as a
function of temperature and pressure. Solid lines represent the results
calculated with eqn. (27). Symbols denote the experimental data :37 =,
110.00 K; 140.00 K; 160.00 K; 223.15 K; 298.15 K;K, >, |, @, È,
323.15 K.

Fig. 9 The hard-core diameter parameter as a function of the critical
volume: Ar ; Kr ; Xe ;=, K, …, L, CS2 ; >, CH4 ; |, CCl4 ; @, CH3F;

], ], *,È, CH3Cl ; +, CClF3 ; ), i-C5H12 ; C5H10 ; SF6 ; C6H12 ;
= , (CH3)3N.

against the critical volume From Fig. 9, one can concludeVc .
that the value of parameter p is proportional to ThisVc1@3.result is comparable to that obtained from viscosity data for a
Lennard-Jones Ñuid.47

Conclusion
The real systems studied were investigated by the statistical
theory of a dense Ñuid of molecules interacting with a square-
well potential. The self-di†usion coefficient equation derived
by the ChapmanÈEnskog method of solution was corrected.
The correction functions for the friction coefficient due to the
hard-core repulsive and attractive potentials were obtained by
using the expression of Speedy4 and the molecular dynamics
simulation data17h19 for the square-well Ñuid, respectively.
The equilibrium radial distribution functions required in the
calculation were proposed in this work. They can be obtained
with the explicit analytic equations of Chang and
Sandler,22,23 and the approximation given in this work. With
these structural data for the square-well Ñuid, the corrected
self-di†usion coefficient equation [eqn. (27)] represents the
molecular dynamics simulation data17h19 with average absol-
ute deviation of 4.64%. The equation obtained in this work
has been compared with the original equation obtained by the
ChapmanÈEnskog method and the expression proposed by
Liu et al.,5 and it gives the best results for the square-well
Ñuid. The corrected self-di†usion coefficient equation [eqn.
(27)] was used to calculate the self-di†usion coefficients for 14
simple substances over wide temperature and pressure ranges.
The equation represents the self-di†usion coefficients for these
systems with acceptable accuracy and the average absolute
deviations are smaller than 10%.
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Appendix

List of symbols

AAD average absolute deviation
a
i

constants in eqns. (8) and (9)
D self-di†usion coefficient
D0 self-di†usion coefficient at very low densities
f (o*) correction function for friction coefficient
g(p) radial distribution function at p ] 0
g(jp) radial distribution function at jp ] 1
I integral of eqn. (6)
J integral of eqn. (4)
k Boltzmann constant
M molar mass
m mass of a molecule
NDP number of data points
P pressure
r distance between two particles
T absolute temperature
t
i

functions in eqns. (8) and (9)
u(r) pair potential
V c critical volume
x reduced distance
y variable in eqn. (4)
Greek letters
a, b constants in eqn. (11)
e well depth parameter
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g reduced density
j well width parameter
o number density
p hard-core diameter
N quantity represented by eqn. (3)
m friction coefficient
Superscripts
cal calculated value
E Enskog
exp simulated or experimental value
HS hard-sphere Ñuid
Subscripts
R repulsive potential
SW square-well Ñuid
S attractive potential
* reduced quantity
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