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Abstract

An attempt is made in this work to combine the Lennard–Jones chain model (LJC) of self-diffusion coefficient with
the statistical associating fluid theory (SAFT). The real non-spherical associating molecules are modeled as chains of
tangent Lennard–Jones segments with association sites. An equation for the self-diffusion coefficient in a polyatomic
associating fluid is presented as a product of a non-hydrogen-bond contribution and a hydrogen-bond contribution.
The SAFT equation provides the density and temperature dependence of an average number of hydrogen bonds in
a molecule, and the LJC equation is used to calculate the self-diffusion coefficient for a non-associating fluid. The
segment–segment interaction energyε is obtained from the critical temperature for alcohols and hydrogen fluoride,
and, the segment diameterσ , the chain lengthN (the number of segments), association energyεHB and volume
κHB are determined from the experimental diffusion data. The equation reproduces the experimental self-diffusion
coefficient with total average absolute deviation of 6.69% for water, 6% alcohols and hydrogen fluoride over wide
ranges of temperature and pressure, including the super-critical water. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The self-diffusion coefficients for dense fluids are important quantities required in engineering design
for production, mass transfer, and processing. For polyatomic non-polar molecular fluids composed of
spherical molecules, the self-diffusion coefficient can be calculated successfully by the hard sphere (HS)
[1], square-well and Lennard–Jones (LJ) [2] models. If the molecules are non-spherical but not too long,
Chandler’s rough hard sphere theory [3] can be used as a connection between real and simple model fluids.
Recently, the Lennard–Jones chain (LJC) model [4] has been developed through analyzing the molecular
dynamics simulation data of hard sphere chain fluids. This model can be directly used to correlate and
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predict the self-diffusion coefficients for polyatomic non-associating fluids [5]. Unfortunately, all the
models described above cannot give good results for an associating fluid, especially for water. From
experimental data of alcohols, Shaker-Gaafar et al. [6] found that the interacting sphere model [7], which
has been used with good success for the description of non-polar liquids, fails for the alcohols. This is
because the strong temperature dependence of self-diffusion coefficient observed in the hydrogen bonded
liquids can definitely not be accounted for by a LJ potential which by its nature permit a fairly weak
temperature dependence only.

Molecular association profoundly affects phase behavior and transport properties of pure fluids and
fluid mixtures. This is because such associating fluids are known to contain not only monomeric molecules
but also relatively long-lived (typically 1–103 ps) clusters [8]. Several researchers [9–11] have studied
the effect of hydrogen bond on the self-diffusion coefficient in water. The appreciably higher values
found experimentally from the self-diffusion coefficients in hot and super-critical water show that the
water molecules are far from being hard spheres. The models that consider the collective movement
of clusters of hydrogen-bond molecules appear to describe the diffusion data well [9]. Ricci et al. [10]
explained the behavior of the self-diffusion coefficient of water, along the coexistence curve, in terms
of local fluctuation of “percentage of broken H-bond” as derived from infra-red spectra data. Lamanna
et al. [11] examined the self-diffusion coefficient of water in terms of the fractions of water molecules
with i hydrogen bonds (i = 0, 1, 2, 3 and 4) as a function of the temperature up to 500 K. The fit of
the self-diffusion data along the saturation line is remarkable. Since the parameters used by Lamanna
et al. [11] were determined below 500 K, extension of their calculation to the super-critical region is not
warranted. A new equation is required to represent the self-diffusion coefficient in such associating fluids
over wide ranges of temperature and pressure.

The statistical associating fluid theory (SAFT) [8,12–18] developed in recent years can successfully
used to calculate the thermodynamic properties and phase equilibria for chain molecules, including
associating fluids. In SAFT, the associating bond strength is quantified with a square-well potential. Each
association site is assumed to have a different interaction with the various sites on another molecule. The
mole fraction of molecules that are bonded can be obtained conveniently. This is very important in the
studies of the structure and dynamic properties for associating fluids.

In this work, the real compounds are described as chains of freely tangent Lannard–Jones segments
with associating sites. The mole fraction of molecules that are bonded is calculated from the expression
given in SAFT. The LJC model [4] is extended to the case of associating fluid and an equation for the
self-diffusion coefficient, in which the role of the associating bond is explicitly shown, is deduced. The
equation is used to correlate the self-diffusion coefficients for water, alcohols and hydrogen fluoride over
wide ranges of temperature and pressure.

2. Expression for the self-diffusion coefficient

2.1. Effect of hydrogen bond on se1f-diffusion coefficient

To explain the temperature dependence of the mass diffusion coefficient for glycerol like liquids,
Lishchuk and Malocule [19] employed the following reasons. To join to a weakly bound cluster, a
molecule must first form with it at least one hydrogen bond. However, the formation of a hydrogen
bond is connected with the escape rate across a potential barrier, separating the different states of a
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molecule [20]:

D = Dnh exp

(
−Eb

kT

)
(1)

whereDnh is a pre-factor andEb is the relative barrier height. One can assume that the barrier height is
proportional to the average number of hydrogen bonds formed by a molecule. Since the average number
of hydrogen bonds increases when the temperature is lowered, the volume available for a displacement
of a molecule should decrease [19]. In the present study, the barrier height is assumed to be proportional
to the mole fraction of molecules bonded at association site A, i.e.

Eb = C(1 − XA) (2)

whereXA is the mole fraction of molecules not bonded at association site A [8,12–18], andC is a constant
for a given substance. For a non-associating fluid,XA = 1 andEb = 0. From Eq. (1) one can conclude
that the pre-factorDnh should be the self-diffusion coefficient for a non-associating fluid. Substituting
Eq. (2) into Eq. (1), the following expression can be obtained:

D = Dnh exp

[
−c(1 − XA)

RT

]
(3)

wherec = NAC, NA the Avogadro constant. An attempt to interpret the experimernal self-diffusion
coefficient data by means of Eq. (3) should then require knowledge of (i) the self-diffusion coefficient for
a non-associating fluid, and (ii) the temperature and density dependence of the mole fraction of molecules
not bonded at association site A. If the real associating fluids are modeled as chains of freely tangent LJ
segments with association sites,Dnh can be calculated from LJC model for the self-diffusion coefficient,
and the mole fraction of molecules not bonded at association site A can be obtained from the SAFT
equation.

2.2. Lennard–Jones chain model for the self-diffusion coefficient

In the previous paper [4], the self-diffusion coefficient equation for a polyatomic non-associating fluid
has been proposed based on the LJC model. The equation of the self-diffusion coefficient for a freely
tangent LJC fluid can be expressed as

DLJC = D0C

[{g(d)/F (N, ρ∗)} + 0.4/T ∗1.5]
(4)

whereD0C is obtained through assuming that the self-diffusion coefficient of a chain molecule at dilute
gas condition is the same as that of a single hard sphere molecule having the same volume and mass, i.e.

D0C = 3d

8ρ∗N1/6

(
kT

πm

)1/2

(5)

In Eq. (4), the radial distribution function at contact,g(d), is given by Carnahan and Starling [21]

g(d) = 1 − 0.5η

(1 − η)3
(6)
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whereη = πρ∗/6 = πρNd3/6,ρ is the number density of a chain molecule,N the chain length expressed
as the number of segments in a molecule, andd is the effective hard sphere diameter. The correction
functionF(N, ρ∗) was obtained from the molecular dynamics simulation data for hard sphere and hard
sphere chain (HSC) fluids [4]. It has the form

F(N, ρ∗) = f (ρ∗) exp[−0.06356(N − 1) − 0.05212γρ∗ − 1.9709γ 2ρ∗] (7)

whereγ = (N − 1)/N ,

f (ρ∗) = 1 + 0.94605ρ∗1.5 + 1.4022ρ∗3 − 5.6898ρ∗5 + 2.6626ρ∗7 (8)

T∗ in Eq. (4) is the reduced temperature. It is defined as

T ∗ = kT

ε
(9)

whereε is the Lennard–Jones segment–segment interaction energy parameter.
There are various theoretical expressions for the effective hard sphere diameter. Ruckenstein and Liu

[2] tested them using a large number of molecular dynamics simulation data and found that the Boltzmann
effective hard sphere diameter with the parameters given by Ben-Amotz and Herschbach [22] leads to
the best agreement with the diffusion data of a LJ fluid. This expression was adopted in our calculations.

d = 1.1532σ

[
1 +

(
T ∗

0.527

)1/2
]−1/6

(10)

whereσ is the LJ segment diameter.

2.3. Mole fraction of molecules not bonded at association site A

Hydrogen bonding is of short range and highly orientation-dependent site–site interactions. In the
SAFT, the strength of association is modeled with a square-well potential and characterized by two
parameters. The association sites on a single molecule are labeled with capital letters, A, B, C, etc. Each
association site is assumed to have a different interaction with the various sites on another molecule. The
mole fraction of molecules not bonded at site A can be determined as follows [8]:

XA = 1

1 + ∑
BρXB∆AB

(11)

where∆AB is the association strength. It is defined as

∆AB = 4πF AB
∫ rC

d

r2Ω(r)g(r) dr (12)

where 4π r2Ω(r)dr is the bonding-site overlap volume element andFAB is given by

F AB = exp

(
εAB

kT

)
− 1 (13)
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The integral in Eq. (12) can be approximated as follows [14]:

∆AB = g(d)

[
exp

(
εAB

kT

)
− 1

]
d3κAB (14)

The association strength given by Eq. (14) depends on two parameters characterising the association
energy and volume.

The expression forXA obtained from Eq. (11) is dependent on the type of bonding in real associating
fluids. The types of association bonding in water, alkanols and amines have been given by Huang and
Radosz [12]. The various expressions forXA corresponding to the type of bonding have been also tabulated
in their paper [12]. In this work, type 4C is adopted for water. If two of the four sites in a water molecule
are labeled O, representing the lone pair electrons of the oxygen atom, while the two others labeled H
represent the hydrogen atoms, the O–H bonding strength is∆OH = ∆HB = ∆ while ∆OO = ∆HH = 0.
This is because the O sites can bond to the H site only. The mole fraction of molecules not bonded at site
A for water can be obtained from Eq. (11), i.e.

XA = −1 + (1 + 8ρ∆)1/2

4ρ∆
(15)

where∆ is the association strength.

∆ = g(d)

[
exp

(
εHB

kT

)
− 1

]
d3κHB (16)

For HF and alcohols, the type of hydrogen bonding is adopted to be 2B, andXA is given by [12]

XA = −1 + (1 + 4ρ∆)1/2

2ρ∆
(17)

3. Results and discussion

The self-diffusion coefficient equation developed above should be tested against molecular simulation
data at first. Gonzalez et al. [23] performed molecular dynamics simulations with a polarizable model for
ethanol. Although the structure and dynamics of the liquid ethanol at three experimental densities and at
critical conditions were investigated, it is hard to use their data to test our model because the two models
are different. Therefore, self-diffusion coefficient data for 10 typical real associating substances have
been used to test Eq. (3) in present work. The data sources, the numbers of data points, the temperature
and pressure ranges of the self-diffusion coefficients for 10 associating substances studied are listed in
Table 1. The substances studied include water, alcohols and hydrogen fluoride. They are typical hydrogen
bonded liquids. They were chosen only when the self-diffusion coefficients at different temperatures and
pressures are available. Mills [27] and Krynicki et al. [28] gave the temperature and pressure dependence
of self-diffusion in water, and the densities are not available in their publications. In this case, the density
of water under pressure was obtained from Vargaftik’s tabulation [30] of the density at saturated vapor
pressure and the compressions of Grindley and Lind [29]. If the density data are not available from the
same reference as the self-diffusion coefficient for methanol and ethanol, they were obtained from the
Tait equation of Cibulka and Zikova [34]. The saturated liquid densities and the vapor pressures required
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Table 1
Database of the self-diffusion coefficients for the compounds studied in this work

No. Compounds Formula M NDP T (K) p (MPa) Data reference

1 Water H2O 18.015 166 273.2–973.2 0.1–303.2 [24–26], [27,28]a

2 Heavy water D2O 20.000 63 283.2–473.2 0.1–304.3 [31]
3 Oxygen-18 water H218O 20.016 37 277.2–333.2 0.1–304.3 [24]
4 Methanol CH4O 32.042 96 187.0–453.0 0.1–385.8 [26,32,33]b

5 Ethanol C2H6O 46.069 139 173.0–437.0 0.1–250.0 [26,32,37]b

6 1-Propanol C3H8O 60.096 53 287.8–317.8 0.1–400.0 [37]
7 2-Propanol C3H8O 60.096 44 253.0–478.0 50–200.0 [6]c

8 1-Pentanol C5H12O 88.150 85 206.6–468.6 50–200.0 [39]d

9 2-Pentanol C5H12O 88.15 39 237.1–483.1 50–200.0 [39]d

10 Hydrogen fluoride HF 20.006 20 243.9–374.1 50–300.0 [41]e

a Densities of water under high pressures were taken from Grindley and Lind [29], and the saturated densities and vapor
pressures were taken from Vargaftik [30].

b If the density data are not available from the same reference as the self-diffusion coefficient, they were calculated from
Cibulka and Zikova [34], the saturated liquid densities were calculated from Cibulka [35], and the vapor pressures were obtained
from Ambrose and Walton [36].

c Densities were estimated from the Hankinson-Brobst–Thomson method [38].
d Densities were calculated from Wappmann et al. [40].
e Densities were calculated from Tait equation with the parameters given in [42].

in the Tait equation were calculated from Cibulka [35] and Ambrose and Walton [36], respectively. The
density of 2-propanol was estimated from Hankinson-Brobst–Thomson method [38].

The present associating LJC model has six parametersσ , ε, N, c and the association energyεHB and
volumeκHB. As pointed by Ruckenstein and Liu [2], and Yu and Gao [4], the self-diffusion coefficient
is much more sensitive to the segment diameterσ and the chain lengthN than to the segment energy
parameterε. The segment–segment interaction energy parameter should depend on the critical temperature
in a simple manner. For water the segment–segment interaction energy parameter was taken from Reid
et al. [38], i.e.

ε

k
= 809.1 K (18)

This value ofε/k was determined from viscosity data of water. For other substances, the correlation
obtained from viscosity data by Chung et al. [43] is employed. If the molecular energy is assumed to be
the sum of all the LJ segment energies, one can obtain:

N
(ε

k

)
= Tc

1.2593
(19)

whereTc is the critical temperature. The critical temperature used to calculate the energy parameterε

was taken from the compilation of Reid et al. [38] except for 2-pentanol. The critical temperature of
2-pentanol was obtained from Daubert and Danner [44] because it is not available from the compilation
of Reid et al. [38]. By analyzing the self-diffusion coefficient data of the substances studied, we found that
the constantc is only dependent on the chain lengthN. The value of the constantc can be approximated
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by

c = 5303.8N1/2 (20)

The other four parameters should depend on the molecular size and shape, and hydrogen bonding. Because
water and hydrogen fluoride are near spherical molecules, the value of the chain lengthN was set to be 1.

The present model does not explicitly account for the effects of dipole–dipole interaction and polariz-
ability, although these are believed to be important for associating fluids. We expect that adjustment of
the parameters can partially correct for errors due to neglect of these effects in the theory.

In summary, the present self-diffusion coefficient equation has three adjustable parameters (σ, εHB

andκHB) for water and hydrogen fluoride, and four adjustable parameters (σ, N, εHB andκHB) for other
non-spherical associating substances. The values of these parameters are very different from the different
published articles. Therefore, they were determined from the experimental self-diffusion coefficient data
with a Marquardt algorithm. The objective function (OF), simultaneously minimize the difference between
the calculated and experimental self-diffusion coefficient data.

OF =
NDP∑
i=1

[
Dcal

i − D
exp
i

D
exp
i

]2

(21)

It is known from spectroscopy that association energy is different in H2O, D2O and H2
18O. For heavy

water and oxygen-18 water, the LJ segment diameter, the segment–segment interaction energy, and the
association volume parameters are regarded as the same of normal water. Only one parameterεHB for
heavy water and oxygen-18 water was determined from the experimental self-diffusion coefficient data.

The obtained parameters along with the average absolute deviations (AAD) in the self-diffusion coef-
ficient are listed in Table 2. The AAD in Table 2 is defined as

AAD = 1

NDP

NDP∑
i=1

∣∣∣∣(Dcal
i − D

exp
i )

D
exp
i

∣∣∣∣ × 100% (22)

Table 2
The parameters of the self-diffusion coefficient equation and the average absolute deviations for the substances studied this work

No. Compound NDP σ (nm) Nε/k (K) N εHB/k (K) κHB AAD (%)

1 Water 166 0.2530 809.10 1.000 3674.52 5.798× 10−6 7.73
2 Heavy water 63 0.2530 809.10 1.000 4028.92 5.798× 10−6 12.18
3 Oxygen-18 water 37 0.2530 809.10 1.000 3653.46 5.798× 10−6 6.52
4 Methanol 96 0.3402 407.05 1.224 1080.42 3.142× 10−2 8.64
5 Ethanol 139 0.3765 408.08 1.454 1560.13 1.095× 10−2 5.62
6 1-Propanol 53 0.3764 426.27 2.002 2166.04 1.605× 10−3 1.79
7 2-Propanol 44 0.4499 403.64 1.230 1141.20 6.032× 10−2 8.28
8 1-Pentanol 85 0.3974 443.26 2.775 2006.27 1.379× 10−3 4.06
9 2-Pentanol 39 0.4083 438.34 2.658 3296.03 1.065× 10−5 8.10

10 HF 20 0.2360 366.08 1.000 1068.30 3.861× 10−2 4.02
Total 742 6.69
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Fig. 1. The logarithms of the self-diffusion coefficient for water as a function of temperature along the saturated line. Solid line
refers to the calculated values, symbols refer to the experimental data: (4) Harris and Woolf [24]; (h) Dullien [26]; (s) Mills
[27]; (e) Krynicki et al. [28].

As seen from Table 2, The present self-diffusion coefficient equation provides accurate correlation for all
the substances studied in this work. For most compounds, the AAD is comparable to the experimental
uncertainty. The total AAD for 10 substances is 6.69%.

The self-diffusion coefficients for water at all states are correlated with one set of parameters, and the
AAD is 7.73%. In Fig. 1, the logarithms of the self-diffusion coefficient for water, along the coexistence
curve, are plotted against temperature from 273.15 K to the critical point. As one can see from Fig. 1,
the agreement between the theoretical expression and the experimental data is very good except in
the sub-critical region. The present equation underestimates the self-diffusion coefficient for water in
the sub-critical region. The self-diffusion coefficients as a function of temperature and pressure for
compressed liquid water and compressed super-critical water are shown in Figs. 2 and 3, respectively.
As shown in these figures, the present equation can represent the self-diffusion coefficients for water at

Fig. 2. The logarithms of the self-diffusion coefficient for compressed water as a function of temperature and pressure. Solid
lines refer to the calculated values, symbols refer to the experimental data: (j) 227.15 K [24]; (4) 298.15 K [24]; (m) 298.2 K
[28]; (.) 318.15 K [24]; (h) 343.2 K [28]; (r) 383.2 K [28]; (e) 423.2 K [28].
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Fig. 3. The logarithms of the self-diffusion coefficient for compressed super-critical water as a function of temperature and
pressure. Solid lines refer to the calculated values, symbols refer to the experimental data [25]: (j) 673.15 K; (4) 773.15 K; (m)
873.15 K; (h) 973.15 K.

all states with good accuracy. Although the expressions derived by Ricci et al. [10] and Lamanna et al.
[11] can be used to represent the self-diffusion coefficient for water very accurate along the saturation
line, they are not suitable to water at other conditions, especially at super-critical region. Considering the
wide ranges of temperature and pressure, the calculation results for water in this work are satisfactory.

The logarithms of the self-diffusion coefficient as a function of temperature and pressure for methanol,
ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-pentanol and liquid HF are shown in Figs. 4–10, respec-
tively. The present self-diffusion coefficient equation gives excellent correlation results in the overall
range considered, as one can see from Figs. 4–10. The equation proposed in this work is adequate to
represent the self-diffusion coefficients for an associating fluid. We will extend the equation to mixtures
in the future work to demonstrate its predictive ability.

Fig. 4. The logarithms of the self-diffusion coefficient for methanol as a function of temperature and pressure. Solid lines refer
to the calculated values, symbols refer to the experimental data: (4) 0.1 MPa [26]; (m) 0.1 MPa [32]; (5) 0.1 MPa [33]; (h)
100 MPa [32]; (j) 200 MPa [32].
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Fig. 5. The logarithms of the self-diffusion coefficient for ethanol as a function of temperature and pressure. Solid lines refer
to the calculated values, symbols refer to the experimental data: (4) 0.1 MPa [26]; (m) 0.1 MPa [32]; (h) 100 MPa [32]; (j)
200 MPa [32].

Fig. 6. The logarithms of the self-diffusion coefficient for 1-propanol as a function of temperature and pressure. Solid lines refer
to the calculated values, symbols refer to the experimental data [37]: (h) 317.8 K; (j) 308.1 K; (4) 298.4 K; (m) 287.8 K.

Fig. 7. The logarithms of the self-diffusion coefficient for 2-propanol as a function of temperature and pressure. Solid lines refer
to the calculated values, symbols refer to the experimental data [6]: (j) 5 MPa; (4) 100 MPa; (m) 200 MPa.
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Fig. 8. Isobars of the self-diffusion coefficient for 1-pentanol. Solid lines refer to the calculated values, symbols refer to the
experimental data [39]: (j) 5 MPa; (h) 100 MPa; (m) 200 MPa.

Fig. 9. The logarithms of the self-diffusion coefficient for 2-pentanol as a function of temperature and pressure. Solid lines refer
to the calculated values, symbols refer to the experimental data [39]: (j) 5 MPa; (4) 100 MPa; (m) 200 MPa.

Fig. 10. The logarithms of the self-diffusion coefficient for liquid hydrogen fluoride as a function of temperature and pressure.
Solid lines refer to the calculated values, symbols refer to the experimental data [41]: (j) 243.9 K; (h) 265.0 K; (m) 283.7 K;
(4) 337.0 K; (r) 374.1 K.
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Fig. 11. The ratio of the experimental diffusion coefficient to the value ofDnh as a function of reduced temperatureTr = T/Tc,
whereDnh is the self-diffusion coefficient in the case of no hydrogen bond. Solid line refers to that of water, dashed line refers
to that of methanol, dotted line refers to that of ethanol.

The necessity to take into account the importance of the hydrogen bond is shown by the fact that if we
try to fit the experimental data with the rough LJ model [2] or the LJC model [4], we obtain the values
of AAD which are always greater than 30%. In the present self-diffusion coefficient equation, the role of
the hydrogen bond is clearly shown. We are able to connect theXA values derived from the SAFT with
the self-diffusion behavior. To show quantitatively the importance of the hydrogen bond on the diffusion
coefficient along the saturation line, the behavior of the ratio of the experimental diffusion coefficient to the
value ofDnh is plotted in Fig. 11 against reduced temperature for water, methanol and ethanol. According
to Fig. 11, water atT ∗ > 0.78 appears to be devoid of hydrogen-bonds. This is validated by the infra-red
spectra data of Luck [45]. When the temperature approaches to the critical temperature, the percentage of
non-hydrogen-bonded H2O molecules determined by 0.9488- and 1.140µ-infra-red bands is near 100%.

4. Conclusion

In this work, an equation for the self-diffusion coefficient of an associating LJC fluid was proposed by
using the statistical associating fluid theory. In the equation, the role of the hydrogen bond is explicitly
shown by the mole fraction of molecules not bonded at site A. The Lennard–Jones chain model was used
to calculate the self-diffusion coefficient in the case of no hydrogen bond. The real associating substances
were modeled as chains of tangent Lennard–Jones segments with association sites. The proposed equation
was used to calculate the self-diffusion coefficients for 10 associating substances over wide temperature
and pressure ranges. The segment–segment interaction energy parameter was estimated from the viscosity
correlation, and the other parameters were determined from the experimental diffusion data. The total
average absolute deviation is 6.69% for 10 associating substances studied in this work. These show that
the proposed equation can be used to calculate the self-diffusion coefficient for associating substances
with good accuracy.

List of symbols
AAD average absolute deviation defined by Eq. (22)
A, B, C association site A, B, C



Y.-X. Yu, G.-H. Gao / Fluid Phase Equilibria 179 (2001) 165–179 177

C proportional constant
c NAC (J/mol)
D self-diffusion coefficient (m2/s)
d effective hard sphere diameter (nm)
Eb relative barrier height (J)
F(N, ρ∗) correction function for HSC fluid
f(ρ∗) correction function for HS fluid
g(d) radial distribution function at contact
k Boltzmann constant (1.381× 10−23 J/K)
M molecular mass (g/mol)
m mass of a segment (g)
N chain length
NA Avogadro number (6.022× 10−23 molecules/mol)
NDP number of data points
OF objective function
p pressure (MPa)
R universal gas constant (8.3144 J/(mol K))
T temperature (K)
T∗ reduced temperature
XA mole fraction of molecules not bonded at site A

Greek letters
∆ strength of interaction between two association sites (nm3)
ε Lennard–Jones segment energy (J)
εHB association energy of hydrogen bonding (J)
γ (N − 1)/N

η πρNd3/6 for real fluids
κHB volume of interaction between two association sites
ρ number density of a molecule (nm3)
σ Lennard–Jones segment diameter (nm)

Subscripts
b barrier
C chain
c critical state
LJC Lennard–Jones chain
nh non-associating fluid
r reduced quantity
0C chain fluid at very low gas density

Superscripts
A, B association site A, B
cal calculated value
exp experimental value
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HB hydrogen bond
OH O–H bond
∗ reduced quantity
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