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A density-functional theory is proposed to describe the density profiles of small ions around an
isolated colloidal particle in the framework of the restricted primitive model where the small ions
have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz
energy functional is derived from a modified fundamental measure theory for the hard-sphere
repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The
theoretical predictions are in good agreement with the results from Monte Carlo simulations and
from previous investigations using integral-equation theory for the ionic density profiles agd the
potentials of spherical particles at a variety of solution conditions. Like the integral-equation
approaches, the density-functional theory is able to capture the oscillatory density profiles of small
ions and the charge inversigavercharging phenomena for particles with elevated charge density.

In particular, our density-functional theory predicts the formation of a second counterion layer near
the surface of highly charged spherical particle. Conversely, the nonlinear Poisson—Boltzmann
theory and its variations are unable to represent the oscillatory behavior of small ion distributions
and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1
electrolyte solution as long as the salt concentration is sufficiently high20@ American Institute

of Physics. [DOI: 10.1063/1.1676121

I. INTRODUCTION many excellent reviews on the theoretical description of pla-
) o ) nar EDLs (see, for example, Ref. 18However, relatively

When a charged colloidal particle is immersed in anfewer studies have been reported on EDLs of other geom-
electrolyte solution, it is surrounded by counterions—i.e..etries. In this work, we are concerned with spherical EDLSs in
small ions of opposite sign—to balance the surface chargearticular because many practical applications of colloid sys-
The charged colloidal surface along with the neutralizing dif‘tems, such as inorganic sols, soap solutions, and aqueous
fuse layer of counterions is often referred to as the electriggytions of globular proteins, are mainly involved with
double layer(EDL), which plays an important role in many gpherical macropaticles. The planar EDL can be regarded as
aspects of interfacial phenomehid.For instance, the stabil- special case of the spherical EDL when the radius ap-
ity of a charge-stabilized colloidal dispersion crucially de- proaches infinity.
pends on the distribution of small ions in the EBIMost The conventional theory for describing the ionic distri-
electrochemical reactions at interfaces occur within the EDLy, tions and the mean electrostatic potential in the spherical
and the kinetics of these reactions is closely related to smajtp, ig provided by the Poisson—BoltzmafPB) equatior?®
ion distributions® Besides, the structure of an EDL provides In this mean-field approach, the colloidal particles are taken

the microscopic details for a rational explanation and predicig pe hard spheres of radiwith a uniform surface charge
t@on of the glectrostatic mobillity6 of charged colloidal par- density Q, and the ionic solution is represented by point
ticles including globular proteirts? charges immersed in a dielectric continuum. The distribu-

,7-18 5,19-22 ” K . .
r tions of small ions and subsequent thermodynamic properties

An EDL may be planaf, cylindrica
sphericafi***° or ellipsoidaf” depending on the geometry 46 cajculated from a numerical solution of the PB
of the charged surface. In the past two decades, the planggatior?8 For colloids of finite concentrations, the Wigner—
EDL has E’flelg extensively investigated using COMPUtEeit; cell modéf has been proposed to represent the over-
simulations, ™ mtegral-.equanon(LEl% ltzhﬁc_)glgs‘?’ "7and  |apping EDLs of neighboring colloidal particles. While the-
density-functional - theories(DFTs).™ There are  qretical approaches based on the PB equation have been

successful in representing a variety of electrostatic phenom-
dCorresponding author. Electronic mail: yangxyu@mail.tsinghua.edu.cn  ena, they are often inadequate for highly charged systems
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where the correlations between small ion distributions arescribe the bulk fluid. This improvement can account for the
significant®®3! lonic correlations may lead to new phenom- drying phenomena of the planar electrode. Using DFT, Patra
ena in colloidal dispersions that contradict predictions fromand Yethira}®??investigated the ionic density profiles, mean
the Poisson—Boltzmann equatitand its variations A well- electrostatic potentials, and preferential interaction coeffi-
known example is charge inversion, or overcharging, of col<ients for the cylindrical EDL with the axial charge densities
loidal particles of high surface charge density. In this casegorresponding to DNA. To our best knowledge, DFT has not
counterions are accumulated close to the colloidal surfacbeen applied to the spherical EDL so far. Various DFTs for
such that the overall charge has opposite sign of the bare structures of EDLs have been recently reviewed by
charge’®® Charge inversion is a broad phenomenon andHansen and Lowetf. Previous applications of DFT for the
there may be a host of physical scenarios which can lead tplanar and cylindrical EDLs indicate that for colloidal par-
macroion overchargingf This has been observed by Straussticles dispersed in electrolyte solutions of monovalent ions,
et al®® in their experimental work on the electrophoretic mo- DFT, PB, and HNC/HNC theories yield comparable results.
bility of a polysoap and was confirmed later by both com-However, DFT is more accurate than other approaches in the
puter simulation® and liquid-state theoriés. presence of multivalent ions or in mixed electrolyte
The importance of correlations between the small ionssolutions!®1¢19
on the structure of spherical EDLs has been well addressed Charge inversion can be explained by both IE theories
by IEs (Refs. 8 and 37and the fifth-order modification of and DFTs quantitatively?**>~*° Previous investigations
the PB equatior(MPBS).23'38 In these more sophisticated suggested that charge inversion occurs only in solutions con-
theories, the ionic solution is often represented by a so-calletfining multivalent counterion2>“~**Using molecular dy-
restricted primitive mode(RPM) where the small ions are namics simulations and an |E theory, Messital ** studied
charged particles of uniform size and the solvent is a conthe effect of an excluded volume of small ions on charge
tinuous dielectric medium. One popular approach is repreinversion in great detail. They also observed charge inversion
sented by the hypernetted chaiiiNC) closure to the With monovalent ion systems in a double layer. Recent ad-
Ornstein—Zernike(02) equatior?3° Specifically, two ver- Vvances in the physics of charge inversion in chemical and
sions of the HNC equations have been proposed to studtiological systems have been reviewed by Groskesrgl >
EDLs. In both versions, the HNC closure is applied to rep-and Levin®*
resenting the correlations between macroparticles and small In this work, we present a partially perturbative DFT for
ions. For the correlations among small ions, one also reliedn isolated charged macroparticle immersed in restrictive-
on the HNC closure, whereas the other applies analyticdpfimitive-model electrolyte solutions. The excess free-energy
expressions from the mean-spherical approximatisA).  functional due to hard-sphere repulsion is evaluated through
We refer to the former as the HNC/HN@ef. 37 theory and  @n improved fundamental measure thébi and the elec-
the latter as the HNC/MSA theofy? Although the HNC/  trical contribution is calculated using a quadratic expansion
HNC theory appears theoretically more consistent, the HNCPf the Helmholtz energy functional with respect to that for a
MSA theory is numerically much more convenient and accuUniform fluid of the same chemical potentials. The DFT is
rate, especially for colloids in electrolyte solutions of low @Pplied to investigating the effect of macroparticle radius and
concentratior?. The HNC/MSA theory has been successfully charge density, ionic valence, and concentration on the ionic
used in the calculation of potentials in electrophoresis density profiles and to calculating the mean electrostatic po-
experiment$:4° tential, / potential, and charge inversion of highly charged
Both IE and MPB5 studies indicated that, whereas theolloidal particles. We compare the results from DFT with

PB equation is sufficient for monovalent electrolyte solutions"0S€ from Monte Carlo simulations and from previous in-
at relatively low concentrationdess than 0.1 mal the cor-  Vestigations based on the HNC/MSA integral equation

relations between small ions become important for multivatheory and the nonlinear PB equation. Because the structure

lent salts and for electrolyte solutions of higher concentra®f EDLS is sensitive to the ionic valence, we consider both
tions. Particularly, the HNC/MSA theory and MPB5 predict SYmmetrical and asymmetrical electrolytes. _
a maximum¢ potential of macroparticles as a function of The rest of this paper is organized as the following. Sec-

surface charge density, in contrast to the prediction of thdion !l describes the DFT theory for spherical EDLS; numeri-
original PB theory. cal results for the ionic density profiles, mean electrostatic

Density-functional theory represents a powerful alterna potentials,{ potentials, and charge inversions are presented

tive to the PB equation and IE theori¥s3In a typical DFT in Sec. lll. Finally, Sep. IV concludes with a few general
approach for describing EDLSs, the excess Helmholtz energ{/emarks and perspectives for future work.

due to the hard-sphere repulsion is given by a weight-density

approximation(e.g., Tarazona reciff® and that due to the

electrostatic interactions is taken into account by a quadratig. THEORY

expansion of the excess Helmholtz energy functional withA Model
respect to that for a uniform fluid. The DFT with the MSA “~

bulk direct correlation function as the input has already been  We consider an isolated spherical particle dispersed in an
applied to the planar EDP:1%%2146Tg improve the perfor- aqueous electrolyte solution within the restrictive primitive
mance of DFT for ions that are strongly coupled, Bodamodel® The macroparticle is a charged hard sphere with a
et al® used the generalized MS&GMSA) (Ref. 44 to de-  surface charge densitp given by
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Ze To find expressions fdFrd {p;}] andFg{{p;}] (both are

=—, (1)  ignored in the nonlinear PB equatiprwe use a modified

4mR fundamental measure theofyIFMT) developed recenthy
wheree is the electron charge, amtiandR are, respectively, and a quadratic expansion of the Helmholtz energy
the valence and radius of the macroparticle. The small ionfunctional’ According to MFMT,Fii{p;}] is given by
are taken to be charged hard spheres of equal diameted
the solvent is represented by a continuous dielectric medium.  BFfi= f ®"n,(r)]dr, (8
The dielectric constant of the solventds-78.5, correspond-
ing to that for water aT =298 K. The pair potential between where®"{n(r)] is the reduced excess Helmholtz energy
ionsi andj is given by density due to hard-sphere repulsig 1/kgT, andn,(r) is
the weighted density. As in Rosenfeld’s original FRFTthe

Q

oo, r<o, . Iy .
5 weighted densities are defined as
uy(r)=y 2z . r=o, ) N N
o na<r>=i§1nai(r>=i§1fpi(r'>w§“><|r'—r|>dr', ©)

wherez; is the valence of ion andr is the center-to-center
distance. The unscreened macroparticle—ion potentiakhere the subscripta=0, 1, 2, 3,V1, andV2 denote the

Vuj(r) is similarly given by index of six weight functionsv{®)(r) that characterize the
o r<R+o/2 volume, surface area, and surface vector averages of a
L spherical particlg.
Vwj(r)=1\ 47R°Qze =R+ o/2. ©) The six weight functions are independent of the density
er ’ profiles. Among them, three weight functions are directly
Throughout this work, if not pointed out, the temperattire related to the geometry of a spherical particle
is set to be 298 K and the diameter of smallions is 0.425 nm.  \(@)(p)= 5(g./2—1), (10)
3(r)y= _

B. Density-functional theory wi(r)=6(oil2=r), (11)

The grand potential for small ions surrounding an iso- W Y2(r)=(r/r)&(oi/2—r), (12)

lat har macroparticle is related to the Helmholtz en- . . . . .
ated cha ged acroparticie IS re'a ed to the Helmholtz e whered(r) is the Dirac delta function ané(r) is the Heavi-
ergy functional for the small ions through the Legendre. . . : .
transform side step function. Integration of two scalar weight functions

w3 (r) andw®)(r) with respect to the position gives the

N particle surface area and volume, respectively, and integra-
Q[{Pi}]:F[{Pi}]+Zl j driVimi(r = wilei(r), (4 tion of the vector weight functionV2(r) is related to the
gradient across the sphere in thalirection. Other weight

where{p;} is a set of density distributions for all small ions, fynctions are proportional to the three functions given in
N is the total number of ionic specieg, is the chemical Egqs.(10—(12—i.e.,

potential of ioni, andF[{p;}] represents the Helmholtz en-

ergy functional. ng)(r) - Wi(Z)(r)

(0)(ry—

The essential task of a density-functional theory is to Wi (1= oil2 g (13
derive an analytical expression for the Helmholtz free energy !
F as a functional of the density distributions. Without loss ofand
generality, we may decomposeinto four parts—i.e., wiV2)(r)

. (V1) M
F[{Pi}]zF'd[{Pi}]+Fﬁ§{Pi}]+F?:X[{Pi}]JFF;X[{Pi}](,) wi ()= om0 (14
5

As in our previous work! the hard-sphere Helmholtz
energy density consists of contributions from the scalar-
weighted densities and the vector-weighted densities:

whereF[{p;}] is the ideal-gas contributio,2§ {p;}] is the
hard-sphere contributiorFZ{{p;}] is the direct Coulomb
contribution, and~g){{p;}] represents a coupling of Coulom-
bic and hard-sphere interactions. The ideal-gas contribution  ®"{n_(r)]=®"Sn (r)]+®"V[n(r)], (15)

is given by the exact expression . o
g y P where the superscriptS) and (V) stand for contributions

” N 3 from scalar and vector weighted densities, respectively. The
F [{Pi}]:kBTiZl f drpi(D[In(pi(AY) =11, (6)  scalar Helmholtz energy density is given by

where);= (h?27mkgT)¥? is the thermal de Broglie wave- nn, niln(1—ng)
: : DS n,(r)]=—neIn(1—nz)+
length of componentandkg is the Boltzmann constant. The a\tJ 1m0 ¥ 1 n,

. B ; 36m7n3
direct Coulomb contribution is also known exactly, given by
3
1 z2;€%pi(r1)p;(ry) n
exy 17— = i4j= PIRTDPIVT 2 + (16)
Fellpl= | | aruar,y FASHEATE @) T ——
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and the vector Helmholtz energy density is given by 41

w<r>—— 2 pi(r')z| ——}dr (23)

Nyz-Nyz  N2aNyz Ny, ri=i

®"M[n (r)]=— In(1—n
[na(r)] 1-n3 12713 n(1=ns) The excess direct correlation functidrC{?*(r) is defined
as
NaNy2°Ny2
- (17 ,BZ

127n5(1—ng)? ACP®(r)=Cy(r)+ —c“5<r> (24)

In the limit of a bulk fluid, the two vector weighted densities AC(Z)eI(r) can be obtained from, for example, numerical so-

Ny, andny, vanish, and the Helmholtz free energy density|,tions of HNC or hybridized MSARef. 55 closure of the
®"s becomes identical to that from the Boublik—Mansoori— OZ equation. The most popular approach is to calculate

Carnahan-Starling—LelarlMCSL) equation of staté? ACi(jz)e'(r) from the MSA (which vyields analytical expres-

Following the previous work on the DFT of a planar gjons in reasonable accuracyn the restrictive primitive
electrical double layet we make a functional Taylor expan- model, the MSA glves&C(z)e'(r) (Ref. 56

sion of the residual Helmholtz free-energy functional around

that for a uniform fluid to obtaifF&{{p;}]: _ zzje’B[2B (E)z 1,
N sRex AC?®(r)= & o o) ") ’
el 1= R+ [ oS 5 S a0 0 >,
(25
no 52FEf ywhere
o | Jara 2 & Sy i T e 26)

(18 andr is related to the inverse of the Debye screening length

Where{p,} is the set of all bulk densities. The direct corre-

lation functions due to the residual electrostatic are defined K2=(477,6’e2/s)21 pPz? (27)
“
as
(Del ex, by
ACHel= — BSFSY 5pi(r), (19
k=2T(1+T o). (28)
ACP®(|r" —r|)=— BS°F &1 pi(r) dp;(r"). (20)

By taking the common small ion radius tending to
If we neglect all higher-order termACl(“)e'(n>2) in Eq.  2€ro, both hard-sphere contributions and interionic correla-

(18), F&{{p;}] becomes tions in Eq.(22) are eliminated, and if we le#"=0, the
' following expression is obtained:
N
RSP 1=BFEL{pTH] - J dr > AC{V*[pi(r)~ py] pi1)]pr=ext = Bzey(r)]. @9
i=1

Obviously, Eq.(29) is the integral version of the nonlinear

1 NN e PB equation for the spherical EDL with the Stern

3 f f dr dr’zl le ACH*([r" =) correlation® which does not include the interionic correla-
tions.

X[pi(r)—pib][pj(l’,)—pjb]. (22) Equations(22) and (29) are solved using the standard

Picard iterative techniques or a finite-element methGuhce
As the grand potentiaf)[{p;}] reaches a minimum at the jonic density profiles are known, the charge density on
equilibrium, we can derive the Euler—Lagrange equations fofhe surface of the macroparticl®, is calculated from
the density profiles of small ions: N
e o0

Q=- >, pi(r)zradr. (30
— s T ziel y(r) — Y°] R2 JR+or2 =1

ex
hs

5p|(r)

—kgT In[pi(r)/pf]= {

IIl. RESULTS AND DISCUSSION

_ ! (2)ele|pr —
kBTJZl fdr AC'l (Ir'=rp) A. lonic density profiles

X[pj(r,)_p]_b] (22) We firs_t dis_cuss the io.nic density .profiles near a charged
macroparticle immersed in symmetricdl:1 and 2:2 and

where Fis is evaluated from Eq(8) and ¢(r) is the mean asymmetrical(1:2 and 2:] electrolyte solutions at various
electrostatic potential that satisfies Poisson’s equation. For @oncentrations and surface charge densities of the macropar-
spherical electric double layer, the mean electrostatic poterticle. To test the performance of the DFT equations and the
tial as a function of distance to the center of the macroparaumerical method, we first consider two limiting cases. One
ticle, ¢(r), can be expressed in terms of the ionic densityis that the macroion has the same size and charge as one of
profiles: the small ions of the electrolyte; the other is that the macro-
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3.5¢ 1:1 electrolyte 16 1:2 electrolyte

P lp,,

4.0 4.5 5.0 5.5 6.0 6.5
rlo

FIG. 1. Density profiles of counterions and coions around a charged spheri-

cal macroparticle of radiuR=1.5nm and surface charge densiy FIG. 3. Density profiles of counterions and coions around a charged spheri-
=0.102 C/n? dispersed in a 1:1 electrolyte at the bulk concentratibon  cal macroparticle of radiuR=1.5nm and surface charge densiy
=1.0 mol/L. The solid triangles represent the Monte Carlo resRies. 24. =0.204 C/n? in a 1:2 electrolyte at the bulk concentrati@0.5 mol/L.

The solid and dashed curves are calculated from the present DFT and nomhe symbols and curves have the same meaning as those in Fig. 1.

linear PB equations, respectively.

Figures 2 and 3 depict the density profiles of coions and
counterions as a function of the radial distance from the cen-
ter of a charged macroparticle immersed in 2:2 and 1:2 elec-

SRR ; . etrolyte solutions, respectively. In both cases, the counterions
radial distribution functions for the corresponding bulk elec-are divalent and the salt concentration is 0.5 mol/L. Both

trolyte solution. In the latter case, there should be little d'f'Figs. 2 and 3 show that in comparison with the MC 4¢3,

ference between the spherical EDL and planar EDL. In bottb ; .
) , FT is more accurate than the nonlinear PB theory, espe-
cases, our DFT results are in excellent agreement with the.

) . ially for th nsity profil f nterions near th ntact.
MC data’%” showing that our DFT equations and the nu- "2, the density profiles of counterions near the contact
. . The nonlinear PB theory predicts only monotonic varia-
merical method are reliable. . . . . :
. . ' . tions for the density profiles of both coions and counterions.
In Fig. 1, we plot the density profiles of coions and : ;
. . : However, the MC results of Torrie and ValleaGaillol and
counterions around a charged spherical macroparticle of r

L h : :
dius R=1.5nm and surface charge densy-0.102 G/ Yevesqué! and Lamperski and Bhuiy&hfor the structures

dispersed in a 1:1 electrolyte at 1 mol/L. As expected, theré)f planar EDLs exhibit interesting layering effects when the

. U : . aurface charge densities are sufficiently high. Our DFT cal-
is a significant accumulation of counterions near the charge

) : . . : Culations as presented in Fig. 4 show that these layering ef-
macroparticle, accompanied by a depletion of coions in th(?ects also occur in spherical geometry. For 1:1 and 2:1 elec-

same region. The density profiles of coion and counterioqr0| tes around a hard spherical ticle with radi
predicted from the DFT are very close to those from MC _y - pherical macroparticie with radius
simulation R—1.5 nm, the ionic reduced densﬂy profiles are monotonic
in the case of surface charge densitigs 0.102 and 0.306
C/m?. In contrast, at a surface charge densify
=0.816 C/mt, a second layer of counterions is clearly
formed for both 1:1 and 2:1 electrolytes. The layering effects
16 2:2 electrolyte are due to the interplay of the increased electrostatic attrac-
tion from the spherical macroparticle, the interionic correla-
' tions, and the hard-core exclusion by the macroparticle and
12 B small ions. The high surface charge densities lead to a sub-
] stantial buildup of counterions next to the macroparticle sur-
gk face. However, steric effects and interionic correlations pre-
7\ : . g
N clude distant counterions from drifting too close to the
'\ macroparticle. These counterions then pack themselves into a
2 second layer at next nearest optimum distaf@eund 1.5)
from the macroparticle surfac&>°In addition, the increased
0 - - Il surface charge density on the spherical macroparticle also
4.0 45 5.0 5.5 6.0 causes an excessive accumulation of counterions near the
rlo macroparticle, accompanied by an excessive depletion of
coions.
o s vonm 3 sos " The efect of variation of the macroparticle radius on
a 2:2 electrolyte solution &&=0.5mol/L. The symbols and curves have COUNterion layering can be seen in Fig. 5, where the surface
same meaning as those in Fig. 1. charge density of the spherical macroparticle is 0.816°C/m

ion has a large sizée.g.,R=10.0nm). In the former case,

p(r) Ip,,
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1007 1.1 electrolyte (@)
o T r—
4.0 4.5 5.0 5.5 6.0 6.5
100 2:1 electrolyte (b)

4.0 4.5 5.0 5.5 6.0 6.5
rlo

FIG. 6. Mean electrostatic potentials from DFT f@) 1:1 and(b) 2:1
electrolytes around a spherical macroparticle with the raiad.5 nm and

FIG. 4. lonic density profiles from DFT fof@) 1:1 and(b) 2:1 electrolytes various surface charge densities. The bulk electrolyte concentrations are 1.0
around a spherical macroparticle with radRis 1.5 nm and various surface and 0.5 mol\L for(a) and (b), respectively. The dotted, dashed, and solid
charge densities. The bulk electrolyte concentrations are 1.0 and 0.5 mol/gurves correspond tQ=0.102, 0.306, and 0.816 Cfnrespectively.

for (a) and (b), respectively. The dotted, dashed, and solid curves are for

Q=0.102, 0.306, and 0.816 Cfnrespectively.

rlo

dictions of the layering effects from the present DFT for high

The height of the first and second layer peaks increases égrface charge densities agree qualitative_ly with MC simula-
the macroparticle radius increases. With regard to the firdions for the planar EDL. In contrast, since the excluded
peak, this effect can be well explained even by the pprolume is neglected, the nonlinear PB theory is unable to
theory. Figure 5 shows that the second counterion layer peatp(redict the layering effects. It should be pointed out that for

disappears at the macroparticle radris 0.5nm. The pre- a typical charged colloidal particle, the surface charge den-
sity is not larger than 0.3 C/nTherefore, generally there is

4 no second-layer formation around a realistic colloidal par-
ticle.
_________ Figures a) and Gb) show the mean electrostatic poten-
3L tial profiles corresponding to the system shown in Fig. 4 for

surface charge densities@t=0.102, 0.306, and 0.816 Cfm

In both cases, the DFT predicts a shallow minimum in the
mean electrostatic potential. The similarity between Figs.
6(a) and Gb) implies that the coions have little effect on the
mean electrostatic potential. At a fixed electrolyte concentra-
tion, both the strength and range of the mean electrostatic
potential increase with surface charge density, leading the
diffuse layer to fall off gradually and extend quite a few ionic
o diameters into the solution. From Figs. 4 and 6 one can see
0 L : : that the properties of a spherical electric double layer are
0.0 0.5 1.0 1.5 2.0 23 3.0 mainly determined by the counterions.

(r-R)o-0.5
B. Zeta potential

FIG. 5. lonic density profiles from DFT for 1.0 mol/L 1:1 electrolyte around
spherical macroparticles with surface charge den€ity0.816 C/m and
various radii.

The zeta potential is defined as the mean electrostatic
potentials(r) at the closest separation between a small ion
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140
120+ 2:2 electrolyte
100} --
.
g 80t
E T
\» 60}
5 0 o o C=0005M
40r s T
C=05M
20 ’/,/‘ ......................... o)
_ 0Lz o 02 03 0.4
) ' . : . .
2

FIG. .7' zeta potentigls for a L1 e_Iectronte as a function of surface Charg‘leilG. 8. Zeta potentials for a 2:2 electrolyte as a function of surface charge
density of macroparticles with radii&=1.5 nm andk=0.5 nm. The open density of macroparticle with radil®= 1.5 nm. The open circles represent
the Monte Carlo simulation resultRefs. 24 and 26 the dotted, dashed,
and solid curves represent the results of the HNC/MSA, PB, and DFT,
r}%spectively.

(Refs. 24 and 2bfor R=1.5 nm andR=0.5 nm, respectively. The dotted
and solid curves represent the results of the PB and DFT, respectively. T
HNC/MSA theory gives almost same results as the DFT in this case.

and the charged macroparticle—i.e = y(R+a/2). In this maximum(or minimum is more pronounced in solu-

terms of the ionic density distributions, ti@otential can be tons of lower ionic concentration. The maximugor mini-
calculated from mum) in the ¢ potential for the divalent counterion systems

dme (= (2 gives the interesting possibility that the diffuse layer differ-
(= f drY, pi(n)zi|lr— =———=|. (31  ential capacitance can become infinite before becoming
& JRtolz i R+o/2 negative* The strength of the potential declines as the
In Figs. 79, we plot the potentials of a macroparticle 1OniC concentration increases. These observations are consis-
as a function of the surface charge density in 1:1, 2:2, andent with that reported by Hayd8hfor the electrophoretic
2:1 electrolyte solutions, respectively. The concentrations ofoPility of hydrocarbon droplets immersed in a NaCl solu-

the electrolytes are 0.01 and 1 mol/L for 1:1 electrolytes and'on-

0.005 and 0.5 mol/L for 2:2 and 2:1 electrolytes. In these N Figs. 10 and 11{ potential is plotted as a function of
figures, the radius of the macroparticle is fixed Rt the inverse of macroparticle radius for the monovalent and

=1.5nm orR=0.5nm. Also plotted in these figures are the divalent counterions_, respectively. Here the macroparticle
results from MC simulations, from the HNC/MSA integral Surface charge density @=0.204 C/nt and the electrolyte
equation, and from the nonlinear PB the8h® For the concentrations are 0.01 and 1 mol/L for 1:1 electrolyte and
monovalent counterions at low concentratigsee Fig. J, ~ 0-005 and 0.5 mol/L for 1:2, 2:1, and 2:2 electrolyte solu-
there is good agreement among HNC/MSA, nonlinear pgions. As in I_:lgs. 7-9, the nonlinear PB theory overestlmgtes
theory, the present DFT, and the MC simulation. In this caseln® ¢ potential except at small values of the macroparticle
the HNC/MSA integral equation gives essentially the same
results as the present DFT. For the divalent counterions
and/or at high electrolyte concentration, both HNC/MSA and 150+
DFT agree well with simulation results, whereas the nonlin-
ear PB theory gives too large an absolute value of ghe
potential and fails to capture the maximuor minimun) of
the ¢ potential as a function of the surface charge density .
(see Figs. 8 and)9For divalent counterions, the results from = 50

~

\n

the present DFT are slightly better than those from the HNC/
MSA. Overall, the{ potentials calculated from the DFT and
HNC/MSA are in very good agreement with simulation
results>*?® whereas the nonlinear PB theory overestimates
the absolute values of thgpotential. The similar behavior of
the DFT and HNC/MSA can be explained by the fact that

50k

both theories are based on quadratic expansions and both use =100 03 _0' > 0 1 0'0 0'1 02 03
the same direct correlation functions for the bulk electrolyte ’ ' ' / '/ N ' '
solution from MSA. Q /(C/m’)

From Figs. 8 and 9 one can see that both DFT and HNCLIG. 9. Zeta potentials for a 2:1 electrolyte as a function of surface charge

MSA prEdiCF a maXimun(_or a minimun) in the curves of  gensity of macroparticle with radit®=1.5 nm. The symbols and curves
the ¢ potential as a function of surface charge density andave the same meaning as those in Fig. 8.
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FIG. 10. Zeta potentials fa@) 1:1 and(b) 2:1 electrolytes as a function of FIG. 11. Zeta potentials foi@@) 1:2 and(b) 2:2 electrolytes as a function of
the inverse of the macroparticle radius at the surface charged dépsity the inverse of the macroparticle radius at the surface charged depsity
=0.204 C/n3. In both cases the counterions are monovalent. The open=0.204 C/mi. In both cases the counterions are divalent. The open circles
circles represent the Monte Carlo simulation res(Rsfs. 24 and 25 the represent the Monte Carlo simulation resRefs. 24 and 2b The dashed
dashed and solid curves represent the results of PB and DFT, respectivelgnd solid curves represent the results of PB and DFT, respectively.

radius and low electrolyte concentrations. In all cases, the

results from the present DFT are in good agreement with the _ ' N2

MC data®*?° It ispshown in Fig. 10 t?‘lat forgmacroions dis- P(n=2+ fozi Amzpi(r)redre. (32

persed in a solution containing only monovalent counterions,

the ¢ potential declines as the radius of the macroparticle  The integrated charge distribution functié(r) repre-

falls while the surface charge density remains constant. Theents the overall charge of the macroion and its surrounding

trend becomes more significant in dilute electrolyte soludonic clouds within radius. It can be easily calculated once

tions. we have the density profiles for the counterions and coions
Figure 11 shows that the nonlinear PB theory is qualitafrom DFT.

tively different from the results from the present DFT and  In Fig. 12 the present DFT results for the integrated

MC simulationé*?*for the divalent counterions at large val- charge distribution functiorP(r) around a macroion are

ues of the macroparticle radius. According to the presengompared to the canonical ensembieMT) MC simulation

DFT, there is a maximum in the curves of thi@otential as  results of Terao and Nakayaffidor 2:2 electrolyte solution

a function of the inverse of the macroparticle radius for theat an average concentrati@,,=1.25mol/L and tempera-

divalent counterions. The nonlinear PB theory is unable tdure T=300K (the corresponding dielectric constant of wa-

reproduce this maximum and predicts a monotonic increaster is e=78). In the NVT MC simulation of Terao and

of the £ potential with an increase of the macroparticle radiusNakayamé? the macroion with radiuR= 1.0 nm and charge
for the divalent counterions. Z=—20 is placed in the center of the cubic simulation box

with side lengthL=10.0nm. In addition taZ monovalent
counterions, the systems contains additional ions from 2:2
electrolytes, where the average concentration of electrolytes
To characterize the oscillating behavior of charge densityn the box is 1.25 mol/L and the radius of all small ions is 0.4
profiles, we define the integrated charge distribution funcnm. From Fig. 12 one can see that the predicted results from
tions P(r): the present DFT are in good agreement with the MC simu-

C. Charge inversion
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FIG. 12. Comparison between the predicted &T MC simulation re- 5 (b)
sults for the integrated charge distribution function around a macroion with i
radiusR=1.0 nm and surface charggé=—20 at T=300 K. There areZ 0
monovalent counterions in the cubic simulation box and the average con- ~ | T T T
centration for 2:2 electrolyte solution in the box is 1.25 mol/L. The diameter = il
of small ions isc=0.4 nm. The symbols represent the MC results. The -5 ~
dashed and solid curves represent the results of the PB and DFT, respec- ..  f .2+ =77
tively. -10
-15
. 46 . 5 10 15 24
lation data,” showing that the present DFT can be used to -20 L L L .
study the interesting charge inversion phenomena. 4 6 8 10
Using the DFT developed in this work, we calculated the 10
integrated charge distribution functions around a spherical
macroparticle of radiuR=1.5nm and a surface charge den- 5
sity Q=—0.102C/mt (corresponding to surface charge
numberZ=—18) for 1:1, 2:1, and 2:2 electrolytes. The re- —_ 0_
sults are shown in Figs. 8-13(c), respectively. At low > 5
electrolyte concentration@=0.05mol/L), Fig. 13 shows R
that P(r) approaches zero monotonically &s>oe, indicat- -10
ing that the charged spherical macropatrticle is fully screened -15
at a distance much larger than the screen length. As the elec- I 0,
trolyte concentration increase€ € 1.0 mol/L), P(r) for 2:1 20 : b B B 2
and 2:2 electrolytes becomes positive at certain ranges of 4 6 8 10
showing a charge inversion. This is because at larger concen- rlo

tratlon_s of Q|valent counterions, t,he charged spherlcal maclfIG. 13. Integrated charge distribution functions around a charged spherical
ropartl'cles in the aqUEOl,!S solution strgngly bind so manY‘nacroparticIe of radiuR=1.5 nm and surface charge numizer — 18 cal-
oppositely charged small ions that the sign of the net macroeulated from DFT in(a) 1:1, (b) 2:1, and(c) 2:2 electrolyte solutions. The
particle charge becomes inverted. The overscreening phdash-dotted, dashed, and solid curves correspond to concentraions
nomenon may also be responsible for the attraction betweenr®-05: :L‘.O,_an(‘j 15 mo!/L, respectively. T_he insets give the full curves of
. . . 49 . charge distribution functions at concentratics 0.05 mol/L.

like-charged colloidal particles.™ At higher electrolyte

concentrations, charge inversion occurs in all three types gfversion at high electrolyte concentrations and/or high sur-
electrolytes. To our knowledge, previous stutfiésdid not  face charge densities. The charge inversion phenomena pre-
find the charge inversion with monovalent counteridas  gjicted from the present DFT are consistent with the recent
ambient conditions Figure 13 shows that the charge inver- molecular dynamics simulation results given by Messina
sion with the monovalent counterions is much weaker thargt 5132 Our calculations suggest that, as proposed by De-
that with the divalent counterions. In Figs.(bBand 13c),  sernoet al?’ and Messinat al,32 the local ion-size correla-
the maximum ofP(r) is closer to the surface of macropar- tions are responsible for the charge inversion phenonmena.
ticles as the electrolyte concentration increases. The charge inversion becomes more significant with an in-
In Fig. 14 we plotted the reduced integrated charge disgrease of the excluded-volume effects in the system—i.e., at
tribution functionsP* (r) =P(r)/|Z| for a charged spherical nhigher ionic size and/or concentrations. As shown in Fig.

macropartide of radiuR=1.5nm dispersed in a 2:2 electro- 13(a)’ Charge inversion occurs even for macroions sur-
lyte solution. Various surface charge densities are considereggunded by monovalent counterions.

The concentration of 2:2 electrolytes is fixed &

=0.25mol/L. The charge inversion phenomenon is indeedV- CONCLUDING REMARKS

observed, but only at sufficiently high surface charge density. A density-functional theory has been proposed for the
The present DFT correctly predicts the occurrence of chargdensity distributions of small ions around a charged spherical
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0.2 tion function around a charged spherical macroparticle. The
charge oscillation and charge inversion phenomena have
0.0 been found for high electrolyte concentration and/or large
02 surface charge density. Interestingly, the charge inversion can
occur even for monovalent counterions at high ionic size
and/or concentration, which is different from the general
belief#5%1 From the DFT calculations we conclude that the
excluded volume plays a crucial role in the charge inversion.
The nonlinear PB theory is unable to predict charge inver-
sion phenomena because it ignores ionic size. In the PB
theory, charged colloidal particles are surrounded by oppo-
sitely charged counterions and the overlap of the counterion
atmosphere produces a purely repulsive interaction between
rlo like-charged colloidal particles. Our results from the DFT
FIG. 14. Reduced integrated charge distribution functiir(r) for 2.2 indicate that the above picture does not hold when the sur-
electrolyte around a macroparticle of radRs: 1.5 nm and various surface face charge density on the colloidal particles or the electro-
charge densities at bulk concentrati@h=0.25mol/L. The dash-dotted, |yte concentration is sufficiently high.
dashed, and solid curves correspond to surface charge de@sity Because the improved fundamental measure theory is
=—0.051,—0.204, and—0.295 C/m, respectively. . . . : .
directly applicable to mixtures and the analytical expressions
for the direct correlation functions of bulk mixed electrolyte
macroparticle. The theory is partially perturbative since thesolutlons are available in Fhe. ||t§ratLﬁ%extenS|9n of the
hard-sphere contribution to the free-energy functional i resent DFT to stu.dy_ the d|str|but|on_s of real_ m|>§ed elep tro-
evaluated from the improved fundamental measure theor te? around a realistic char.ged colloidal partlc'le IS relatively
traightforward. To further improve the quantitative perfor-

and the electrical contribution is approximated by a quadrati tth ¢ DET treat the bulk electrolvt
expansion with respect to the corresponding bulk fluid. Ex.nance ofthe presen » On€ may treat tne bulk electrolyte

tensive comparison with Monte Carlo simulations indicatesby means of more elaborate theories for the direct correlation
functions—for instance, the generalized mean spherica
funct f t the g lized ph I

that the present DFT provides accurate ionic density distri- Y I . .
butions for a charged spherical macroparticle immersed iﬁlpproxmatlorf‘, which is thermodynamically self-consistent
nd still analytical. It is also possible to include the solvent

1:1, 1:2, 2:1, and 2:2 electrolyte solutions. The present DFF

successfully predicts the properties of counterion layering a&water) as a third component in the solution if the interac-

tions are pairwise decomposable and a theory for the bulk

high surface charge density in a spherical EDL. It is con- . A . 3 nr .
cluded from the present DFT that an increase of the surfac55lnncorm fluid is availablé” With these improvements, the

charge density or the radius of the spherical particle enpresent DFT will be potentially useful to investigate tie

hances the tendency for the formation of the second counteP—Otential and eletrophoretic mobility of colloidal particles in

ion layer solution including proteins in aqueous electrolyte solutions.
The results from the present DFT are also compared to
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