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A density-functional theory is proposed to describe the density profiles of small ions around an
isolated colloidal particle in the framework of the restricted primitive model where the small ions
have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz
energy functional is derived from a modified fundamental measure theory for the hard-sphere
repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The
theoretical predictions are in good agreement with the results from Monte Carlo simulations and
from previous investigations using integral-equation theory for the ionic density profiles and thez
potentials of spherical particles at a variety of solution conditions. Like the integral-equation
approaches, the density-functional theory is able to capture the oscillatory density profiles of small
ions and the charge inversion~overcharging! phenomena for particles with elevated charge density.
In particular, our density-functional theory predicts the formation of a second counterion layer near
the surface of highly charged spherical particle. Conversely, the nonlinear Poisson–Boltzmann
theory and its variations are unable to represent the oscillatory behavior of small ion distributions
and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1
electrolyte solution as long as the salt concentration is sufficiently high. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1676121#

I. INTRODUCTION

When a charged colloidal particle is immersed in an
electrolyte solution, it is surrounded by counterions—i.e.,
small ions of opposite sign—to balance the surface charge.
The charged colloidal surface along with the neutralizing dif-
fuse layer of counterions is often referred to as the electric
double layer~EDL!, which plays an important role in many
aspects of interfacial phenomena.1–3 For instance, the stabil-
ity of a charge-stabilized colloidal dispersion crucially de-
pends on the distribution of small ions in the EDL.2 Most
electrochemical reactions at interfaces occur within the EDL
and the kinetics of these reactions is closely related to small
ion distributions.4 Besides, the structure of an EDL provides
the microscopic details for a rational explanation and predic-
tion of the electrostatic mobility of charged colloidal par-
ticles including globular proteins.5,6

An EDL may be planar,4,7–18 cylindrical,5,19–22

spherical,3,23–26 or ellipsoidal27 depending on the geometry
of the charged surface. In the past two decades, the planar
EDL has been extensively investigated using computer
simulations,7,11,17 integral-equation~IE! theories,8,13,16 and
density-functional theories~DFTs!.9,10,12,14–16 There are

many excellent reviews on the theoretical description of pla-
nar EDLs ~see, for example, Ref. 18!. However, relatively
fewer studies have been reported on EDLs of other geom-
etries. In this work, we are concerned with spherical EDLs in
particular because many practical applications of colloid sys-
tems, such as inorganic sols, soap solutions, and aqueous
solutions of globular proteins, are mainly involved with
spherical macropaticles. The planar EDL can be regarded as
a special case of the spherical EDL when the radius ap-
proaches infinity.

The conventional theory for describing the ionic distri-
butions and the mean electrostatic potential in the spherical
EDL is provided by the Poisson–Boltzmann~PB! equation.26

In this mean-field approach, the colloidal particles are taken
to be hard spheres of radiusR with a uniform surface charge
density Q, and the ionic solution is represented by point
charges immersed in a dielectric continuum. The distribu-
tions of small ions and subsequent thermodynamic properties
are calculated from a numerical solution of the PB
equation.28 For colloids of finite concentrations, the Wigner–
Seitz cell model29 has been proposed to represent the over-
lapping EDLs of neighboring colloidal particles. While the-
oretical approaches based on the PB equation have been
successful in representing a variety of electrostatic phenom-
ena, they are often inadequate for highly charged systemsa!Corresponding author. Electronic mail: yangxyu@mail.tsinghua.edu.cn
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where the correlations between small ion distributions are
significant.30,31 Ionic correlations may lead to new phenom-
ena in colloidal dispersions that contradict predictions from
the Poisson–Boltzmann equation~and its variations!. A well-
known example is charge inversion, or overcharging, of col-
loidal particles of high surface charge density. In this case,
counterions are accumulated close to the colloidal surface
such that the overall charge has opposite sign of the bare
charge.32,33 Charge inversion is a broad phenomenon and
there may be a host of physical scenarios which can lead to
macroion overcharging.34 This has been observed by Strauss
et al.35 in their experimental work on the electrophoretic mo-
bility of a polysoap and was confirmed later by both com-
puter simulations36 and liquid-state theories.8

The importance of correlations between the small ions
on the structure of spherical EDLs has been well addressed
by IEs ~Refs. 8 and 37! and the fifth-order modification of
the PB equation~MPB5!.23,38 In these more sophisticated
theories, the ionic solution is often represented by a so-called
restricted primitive model~RPM! where the small ions are
charged particles of uniform size and the solvent is a con-
tinuous dielectric medium. One popular approach is repre-
sented by the hypernetted chain~HNC! closure to the
Ornstein–Zernike~02! equation.8,39 Specifically, two ver-
sions of the HNC equations have been proposed to study
EDLs. In both versions, the HNC closure is applied to rep-
resenting the correlations between macroparticles and small
ions. For the correlations among small ions, one also relies
on the HNC closure, whereas the other applies analytical
expressions from the mean-spherical approximation~MSA!.
We refer to the former as the HNC/HNC~Ref. 37! theory and
the latter as the HNC/MSA theory.3,8 Although the HNC/
HNC theory appears theoretically more consistent, the HNC/
MSA theory is numerically much more convenient and accu-
rate, especially for colloids in electrolyte solutions of low
concentration.3 The HNC/MSA theory has been successfully
used in the calculation ofz potentials in electrophoresis
experiments.6,40

Both IE and MPB5 studies indicated that, whereas the
PB equation is sufficient for monovalent electrolyte solutions
at relatively low concentrations~less than 0.1 mol!, the cor-
relations between small ions become important for multiva-
lent salts and for electrolyte solutions of higher concentra-
tions. Particularly, the HNC/MSA theory and MPB5 predict
a maximumz potential of macroparticles as a function of
surface charge density, in contrast to the prediction of the
original PB theory.

Density-functional theory represents a powerful alterna-
tive to the PB equation and IE theories.41–43In a typical DFT
approach for describing EDLs, the excess Helmholtz energy
due to the hard-sphere repulsion is given by a weight-density
approximation~e.g., Tarazona recipe41! and that due to the
electrostatic interactions is taken into account by a quadratic
expansion of the excess Helmholtz energy functional with
respect to that for a uniform fluid. The DFT with the MSA
bulk direct correlation function as the input has already been
applied to the planar EDL.9,10,12,14,16To improve the perfor-
mance of DFT for ions that are strongly coupled, Boda
et al.15 used the generalized MSA~GMSA! ~Ref. 44! to de-

scribe the bulk fluid. This improvement can account for the
drying phenomena of the planar electrode. Using DFT, Patra
and Yethiraj19,22 investigated the ionic density profiles, mean
electrostatic potentials, and preferential interaction coeffi-
cients for the cylindrical EDL with the axial charge densities
corresponding to DNA. To our best knowledge, DFT has not
been applied to the spherical EDL so far. Various DFTs for
the structures of EDLs have been recently reviewed by
Hansen and Lowen.30 Previous applications of DFT for the
planar and cylindrical EDLs indicate that for colloidal par-
ticles dispersed in electrolyte solutions of monovalent ions,
DFT, PB, and HNC/HNC theories yield comparable results.
However, DFT is more accurate than other approaches in the
presence of multivalent ions or in mixed electrolyte
solutions.10,16,19

Charge inversion can be explained by both IE theories
and DFTs quantitatively.6,20,45–49 Previous investigations
suggested that charge inversion occurs only in solutions con-
taining multivalent counterions.6,20,46–48Using molecular dy-
namics simulations and an IE theory, Messinaet al.32 studied
the effect of an excluded volume of small ions on charge
inversion in great detail. They also observed charge inversion
with monovalent ion systems in a double layer. Recent ad-
vances in the physics of charge inversion in chemical and
biological systems have been reviewed by Grosberget al.50

and Levin.31

In this work, we present a partially perturbative DFT for
an isolated charged macroparticle immersed in restrictive-
primitive-model electrolyte solutions. The excess free-energy
functional due to hard-sphere repulsion is evaluated through
an improved fundamental measure theory51,52 and the elec-
trical contribution is calculated using a quadratic expansion
of the Helmholtz energy functional with respect to that for a
uniform fluid of the same chemical potentials. The DFT is
applied to investigating the effect of macroparticle radius and
charge density, ionic valence, and concentration on the ionic
density profiles and to calculating the mean electrostatic po-
tential, z potential, and charge inversion of highly charged
colloidal particles. We compare the results from DFT with
those from Monte Carlo simulations and from previous in-
vestigations based on the HNC/MSA integral equation
theory and the nonlinear PB equation. Because the structure
of EDLs is sensitive to the ionic valence, we consider both
symmetrical and asymmetrical electrolytes.

The rest of this paper is organized as the following. Sec-
tion II describes the DFT theory for spherical EDLs; numeri-
cal results for the ionic density profiles, mean electrostatic
potentials,z potentials, and charge inversions are presented
in Sec. III. Finally, Sec. IV concludes with a few general
remarks and perspectives for future work.

II. THEORY

A. Model

We consider an isolated spherical particle dispersed in an
aqueous electrolyte solution within the restrictive primitive
model.39 The macroparticle is a charged hard sphere with a
surface charge densityQ given by
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Q5
Ze

4pR2
, ~1!

wheree is the electron charge, andZ andR are, respectively,
the valence and radius of the macroparticle. The small ions
are taken to be charged hard spheres of equal diameters and
the solvent is represented by a continuous dielectric medium.
The dielectric constant of the solvent is«578.5, correspond-
ing to that for water atT5298 K. The pair potential between
ions i and j is given by

ui j ~r !5H `, r ,s,

zizje
2

«r
, r>s,

~2!

wherezi is the valence of ioni and r is the center-to-center
distance. The unscreened macroparticle–ion potential
VM j (r ) is similarly given by

VM j~r !5H `, r ,R1s/2

4pR2Qzje

«r
, r>R1s/2.

~3!

Throughout this work, if not pointed out, the temperatureT
is set to be 298 K and the diameter of small ions is 0.425 nm.

B. Density-functional theory

The grand potential for small ions surrounding an iso-
lated charged macroparticle is related to the Helmholtz en-
ergy functional for the small ions through the Legendre
transform

V@$r i%#5F@$r i%#1(
i 51

N E dr @VMi~r !2m i #r i~r !, ~4!

where$r i% is a set of density distributions for all small ions,
N is the total number of ionic species,m i is the chemical
potential of ioni, andF@$r i%# represents the Helmholtz en-
ergy functional.

The essential task of a density-functional theory is to
derive an analytical expression for the Helmholtz free energy
F as a functional of the density distributions. Without loss of
generality, we may decomposeF into four parts—i.e.,

F@$r i%#5F id@$r i%#1Fhs
ex@$r i%#1FC

ex@$r i%#1Fel
ex@$r i%#,

~5!

whereF id@$r i%# is the ideal-gas contribution,Fhs
ex@$r i%# is the

hard-sphere contribution,FC
ex@$r i%# is the direct Coulomb

contribution, andFel
ex@$r i%# represents a coupling of Coulom-

bic and hard-sphere interactions. The ideal-gas contribution
is given by the exact expression

F id@$r i%#5kBT(
i 51

N E dr r i~r !@ ln~r i~r !l i
3!21#, ~6!

wherel i5(h2/2pmikBT)1/2 is the thermal de Broglie wave-
length of componenti andkB is the Boltzmann constant. The
direct Coulomb contribution is also known exactly, given by

FC
ex@$r i%#5

1

2 E E dr1dr2(
i , j

zizje
2r i~r1!r j~r2!

«ur12r2u
. ~7!

To find expressions forFhs
ex@$r i%# andFel

ex@$r i%# ~both are
ignored in the nonlinear PB equation!, we use a modified
fundamental measure theory~MFMT! developed recently51

and a quadratic expansion of the Helmholtz energy
functional.12 According to MFMT,Fhs

ex@$r i%# is given by

bFhs
ex5E Fhs@na~r !#dr , ~8!

whereFhs@na(r )# is the reduced excess Helmholtz energy
density due to hard-sphere repulsion,b51/kBT, andna(r ) is
the weighted density. As in Rosenfeld’s original FMT,53 the
weighted densities are defined as

na~r !5(
i 51

N

na i~r !5(
i 51

N E r i~r 8!wi
~a!~ ur 82r u!dr 8, ~9!

where the subscriptsa50, 1, 2, 3,V1, andV2 denote the
index of six weight functionswi

(a)(r ) that characterize the
volume, surface area, and surface vector averages of a
spherical particlei.

The six weight functions are independent of the density
profiles. Among them, three weight functions are directly
related to the geometry of a spherical particlei:

wi
~2!~r !5d~s i /22r !, ~10!

wi
~3!~r !5u~s i /22r !, ~11!

wi
~V2!~r !5~r /r !d~s i /22r !, ~12!

whered(r ) is the Dirac delta function andu(r ) is the Heavi-
side step function. Integration of two scalar weight functions
wi

(2)(r ) and wi
(3)(r ) with respect to the position gives the

particle surface area and volume, respectively, and integra-
tion of the vector weight functionwi

(V2)(r ) is related to the
gradient across the sphere in ther direction. Other weight
functions are proportional to the three functions given in
Eqs.~10!–~12!—i.e.,

wi
~0!~r !5

wi
~1!~r !

s i /2
5

wi
~2!~r !

ps i
2

~13!

and

wi
~V1!~r !5

wi
~V2!~r !

2ps i
. ~14!

As in our previous work,51 the hard-sphere Helmholtz
energy density consists of contributions from the scalar-
weighted densities and the vector-weighted densities:

Fhs@na~r !#5Fhs~S)@na~r !#1Fhs~V)@na~r !#, ~15!

where the superscripts~S! and ~V! stand for contributions
from scalar and vector weighted densities, respectively. The
scalar Helmholtz energy density is given by

Fhs~S)@na~r !#52n0 ln~12n3!1
n1n2

12n3
1

n2
3 ln~12n3!

36pn3
2

1
n2

3

36pn3~12n3!2
, ~16!
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and the vector Helmholtz energy density is given by

Fhs~V)@na~r !#52
nV1"nV2

12n3
2

n2nV2"nV2

12pn3
2

ln~12n3!

2
n2nV2"nV2

12pn3~12n3!2
. ~17!

In the limit of a bulk fluid, the two vector weighted densities
nV1 and nV2 vanish, and the Helmholtz free energy density
Fhs becomes identical to that from the Boublik–Mansoori–
Carnahan–Starling–Leland~BMCSL! equation of state.54

Following the previous work on the DFT of a planar
electrical double layer,41 we make a functional Taylor expan-
sion of the residual Helmholtz free-energy functional around
that for a uniform fluid to obtainFel

ex@$r i%#:

Fel
ex@$r i%#5Fel

ex@$r i
b%#1E dr(

i 51

N dFel
ex

dr i~r !
@r i~r !2r i

b#

1
1

2 E E dr dr 8(
j 51

N

(
i 51

N d2Fel
ex

dr i~r !dr j~r 8!
@r i~r !2r i

b#@r j~r 8!2r j
b#1¯,

~18!

where$r i
b% is the set of all bulk densities. The direct corre-

lation functions due to the residual electrostatic are defined
as

DCi
~1!el52bdFel

ex/dr i~r !, ~19!

DCi j
~2!el~ ur 82r u!52bd2Fel

ex/dr i~r !dr j~r 8!. ~20!

If we neglect all higher-order termsDCi jk
(n)el (n.2) in Eq.

~18!, Fel
ex@$r i%# becomes

bFel
ex@$r i%#5bFel

ex@$r i
b%#2E dr(

i 51

N

DCi
~1!el@r i~r !2r i

b#

2
1

2 E E dr dr 8(
i 51

N

(
j 51

N

DCi j
~2!el~ ur 82r u!

3@r i~r !2r i
b#@r j~r 8!2r j

b#. ~21!

As the grand potentialV@$r i%# reaches a minimum at
equilibrium, we can derive the Euler–Lagrange equations for
the density profiles of small ions:

2kBT ln@r i~r !/r i
b#5F dFhs

ex

dr i~r !
2m i ,hs

ex G1zie@c~r !2cb#

2kBT(
j 51

N E dr 8 DCi j
~2!el~ ur 82r u!

3@r j~r 8!2r j
b#, ~22!

whereFhs
ex is evaluated from Eq.~8! and c~r ! is the mean

electrostatic potential that satisfies Poisson’s equation. For a
spherical electric double layer, the mean electrostatic poten-
tial as a function of distance to the center of the macropar-
ticle, c(r ), can be expressed in terms of the ionic density
profiles:

c~r !5
4pe

« E
r

`

(
i 51

N

r i~r 8!ziF r 82
r 82

r Gdr8. ~23!

The excess direct correlation functionDCi j
(2)el(r ) is defined

as

DCi j
~2!el~r !5Ci j ~r !1

bzizje
2

«r
2Ci j

hs~r !. ~24!

DCi j
(2)el(r ) can be obtained from, for example, numerical so-

lutions of HNC or hybridized MSA~Ref. 55! closure of the
OZ equation. The most popular approach is to calculate
DCi j

(2)el(r ) from the MSA ~which yields analytical expres-
sions in reasonable accuracy!. In the restrictive primitive
model, the MSA givesDCi j

(2)el(r ) ~Ref. 56!

DCi j
~2!el~r !5H 2

zizje
2b

« F2B

s
2S B

s D 2

r 2
1

r G , r ,s,

0, r .s,
~25!

where

B5Gs/~11Gs! ~26!

andG is related to the inverse of the Debye screening length

k25~4pbe2/«!(
i 51

N

r i
bzi

2 ~27!

by

k52G~11Gs!. ~28!

By taking the common small ion radiuss tending to
zero, both hard-sphere contributions and interionic correla-
tions in Eq. ~22! are eliminated, and if we letcb50, the
following expression is obtained:

r i~r !/r i
b5exp@2bziec~r !#. ~29!

Obviously, Eq.~29! is the integral version of the nonlinear
PB equation for the spherical EDL with the Stern
correlation,3 which does not include the interionic correla-
tions.

Equations~22! and ~29! are solved using the standard
Picard iterative techniques or a finite-element method.9 Once
the ionic density profiles are known, the charge density on
the surface of the macroparticle,Q, is calculated from

Q52
e

R2 ER1s/2

`

(
i 51

N

r i~r !zir
2dr. ~30!

III. RESULTS AND DISCUSSION

A. Ionic density profiles

We first discuss the ionic density profiles near a charged
macroparticle immersed in symmetrical~1:1 and 2:2! and
asymmetrical~1:2 and 2:1! electrolyte solutions at various
concentrations and surface charge densities of the macropar-
ticle. To test the performance of the DFT equations and the
numerical method, we first consider two limiting cases. One
is that the macroion has the same size and charge as one of
the small ions of the electrolyte; the other is that the macro-
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ion has a large size~e.g.,R510.0 nm). In the former case,
the reduced ionic density profiles become identical to the
radial distribution functions for the corresponding bulk elec-
trolyte solution. In the latter case, there should be little dif-
ference between the spherical EDL and planar EDL. In both
cases, our DFT results are in excellent agreement with the
MC data,7,57 showing that our DFT equations and the nu-
merical method are reliable.

In Fig. 1, we plot the density profiles of coions and
counterions around a charged spherical macroparticle of ra-
dius R51.5 nm and surface charge densityQ50.102 C/m2

dispersed in a 1:1 electrolyte at 1 mol/L. As expected, there
is a significant accumulation of counterions near the charged
macroparticle, accompanied by a depletion of coions in the
same region. The density profiles of coion and counterion
predicted from the DFT are very close to those from MC
simulations.24

Figures 2 and 3 depict the density profiles of coions and
counterions as a function of the radial distance from the cen-
ter of a charged macroparticle immersed in 2:2 and 1:2 elec-
trolyte solutions, respectively. In both cases, the counterions
are divalent and the salt concentration is 0.5 mol/L. Both
Figs. 2 and 3 show that in comparison with the MC data,24,25

DFT is more accurate than the nonlinear PB theory, espe-
cially for the density profiles of counterions near the contact.

The nonlinear PB theory predicts only monotonic varia-
tions for the density profiles of both coions and counterions.
However, the MC results of Torrie and Valleau,7 Caillol and
Levesque,11 and Lamperski and Bhuiyan58 for the structures
of planar EDLs exhibit interesting layering effects when the
surface charge densities are sufficiently high. Our DFT cal-
culations as presented in Fig. 4 show that these layering ef-
fects also occur in spherical geometry. For 1:1 and 2:1 elec-
trolytes around a hard spherical macroparticle with radius
R51.5 nm, the ionic reduced density profiles are monotonic
in the case of surface charge densitiesQ50.102 and 0.306
C/m2. In contrast, at a surface charge densityQ
50.816 C/m2, a second layer of counterions is clearly
formed for both 1:1 and 2:1 electrolytes. The layering effects
are due to the interplay of the increased electrostatic attrac-
tion from the spherical macroparticle, the interionic correla-
tions, and the hard-core exclusion by the macroparticle and
small ions. The high surface charge densities lead to a sub-
stantial buildup of counterions next to the macroparticle sur-
face. However, steric effects and interionic correlations pre-
clude distant counterions from drifting too close to the
macroparticle. These counterions then pack themselves into a
second layer at next nearest optimum distance~around 1.5s!
from the macroparticle surface.58,59In addition, the increased
surface charge density on the spherical macroparticle also
causes an excessive accumulation of counterions near the
macroparticle, accompanied by an excessive depletion of
coions.

The effect of variation of the macroparticle radius on
counterion layering can be seen in Fig. 5, where the surface
charge density of the spherical macroparticle is 0.816 C/m2.

FIG. 2. Density profiles of counterions and coions around a charged spheri-
cal macroparticle of radiusR51.5 nm and charge densityQ50.204 C/m2 in
a 2:2 electrolyte solution atC50.5 mol/L. The symbols and curves have
same meaning as those in Fig. 1.

FIG. 3. Density profiles of counterions and coions around a charged spheri-
cal macroparticle of radiusR51.5 nm and surface charge densityQ
50.204 C/m2 in a 1:2 electrolyte at the bulk concentrationC50.5 mol/L.
The symbols and curves have the same meaning as those in Fig. 1.

FIG. 1. Density profiles of counterions and coions around a charged spheri-
cal macroparticle of radiusR51.5 nm and surface charge densityQ
50.102 C/m2 dispersed in a 1:1 electrolyte at the bulk concentrationC
51.0 mol/L. The solid triangles represent the Monte Carlo results~Ref. 24!.
The solid and dashed curves are calculated from the present DFT and non-
linear PB equations, respectively.
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The height of the first and second layer peaks increases as
the macroparticle radius increases. With regard to the first
peak, this effect can be well explained even by the PB
theory. Figure 5 shows that the second counterion layer peak
disappears at the macroparticle radiusR50.5 nm. The pre-

dictions of the layering effects from the present DFT for high
surface charge densities agree qualitatively with MC simula-
tions for the planar EDL. In contrast, since the excluded
volume is neglected, the nonlinear PB theory is unable to
predict the layering effects. It should be pointed out that for
a typical charged colloidal particle, the surface charge den-
sity is not larger than 0.3 C/m2. Therefore, generally there is
no second-layer formation around a realistic colloidal par-
ticle.

Figures 6~a! and 6~b! show the mean electrostatic poten-
tial profiles corresponding to the system shown in Fig. 4 for
surface charge densities atQ50.102, 0.306, and 0.816 C/m2.
In both cases, the DFT predicts a shallow minimum in the
mean electrostatic potential. The similarity between Figs.
6~a! and 6~b! implies that the coions have little effect on the
mean electrostatic potential. At a fixed electrolyte concentra-
tion, both the strength and range of the mean electrostatic
potential increase with surface charge density, leading the
diffuse layer to fall off gradually and extend quite a few ionic
diameters into the solution. From Figs. 4 and 6 one can see
that the properties of a spherical electric double layer are
mainly determined by the counterions.

B. Zeta potential

The zeta potentialz is defined as the mean electrostatic
potentialc(r ) at the closest separation between a small ion

FIG. 4. Ionic density profiles from DFT for~a! 1:1 and~b! 2:1 electrolytes
around a spherical macroparticle with radiusR51.5 nm and various surface
charge densities. The bulk electrolyte concentrations are 1.0 and 0.5 mol/L
for ~a! and ~b!, respectively. The dotted, dashed, and solid curves are for
Q50.102, 0.306, and 0.816 C/m2, respectively.

FIG. 5. Ionic density profiles from DFT for 1.0 mol/L 1:1 electrolyte around
spherical macroparticles with surface charge densityQ50.816 C/m2 and
various radii.

FIG. 6. Mean electrostatic potentials from DFT for~a! 1:1 and ~b! 2:1
electrolytes around a spherical macroparticle with the radiusR51.5 nm and
various surface charge densities. The bulk electrolyte concentrations are 1.0
and 0.5 mol\L for~a! and ~b!, respectively. The dotted, dashed, and solid
curves correspond toQ50.102, 0.306, and 0.816 C/m2, respectively.
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and the charged macroparticle—i.e.,z5c(R1s/2). In
terms of the ionic density distributions, thez potential can be
calculated from

z5
4pe

« E
R1s/2

`

dr(
i

r i~r !ziF r 2
r 2

R1s/2G . ~31!

In Figs. 7–9, we plot thez potentials of a macroparticle
as a function of the surface charge density in 1:1, 2:2, and
2:1 electrolyte solutions, respectively. The concentrations of
the electrolytes are 0.01 and 1 mol/L for 1:1 electrolytes and
0.005 and 0.5 mol/L for 2:2 and 2:1 electrolytes. In these
figures, the radius of the macroparticle is fixed atR
51.5 nm orR50.5 nm. Also plotted in these figures are the
results from MC simulations, from the HNC/MSA integral
equation, and from the nonlinear PB theory.24,25 For the
monovalent counterions at low concentrations~see Fig. 7!,
there is good agreement among HNC/MSA, nonlinear PB
theory, the present DFT, and the MC simulation. In this case,
the HNC/MSA integral equation gives essentially the same
results as the present DFT. For the divalent counterions
and/or at high electrolyte concentration, both HNC/MSA and
DFT agree well with simulation results, whereas the nonlin-
ear PB theory gives too large an absolute value of thez
potential and fails to capture the maximum~or minimum! of
the z potential as a function of the surface charge density
~see Figs. 8 and 9!. For divalent counterions, the results from
the present DFT are slightly better than those from the HNC/
MSA. Overall, thez potentials calculated from the DFT and
HNC/MSA are in very good agreement with simulation
results,24,25 whereas the nonlinear PB theory overestimates
the absolute values of thez potential. The similar behavior of
the DFT and HNC/MSA can be explained by the fact that
both theories are based on quadratic expansions and both use
the same direct correlation functions for the bulk electrolyte
solution from MSA.

From Figs. 8 and 9 one can see that both DFT and HNC/
MSA predict a maximum~or a minimum! in the curves of
the z potential as a function of surface charge density and

this maximum~or minimum! is more pronounced in solu-
tions of lower ionic concentration. The maximum~or mini-
mum! in the z potential for the divalent counterion systems
gives the interesting possibility that the diffuse layer differ-
ential capacitance can become infinite before becoming
negative.14 The strength of thez potential declines as the
ionic concentration increases. These observations are consis-
tent with that reported by Haydon60 for the electrophoretic
mobility of hydrocarbon droplets immersed in a NaCl solu-
tion.

In Figs. 10 and 11,z potential is plotted as a function of
the inverse of macroparticle radius for the monovalent and
divalent counterions, respectively. Here the macroparticle
surface charge density isQ50.204 C/m2 and the electrolyte
concentrations are 0.01 and 1 mol/L for 1:1 electrolyte and
0.005 and 0.5 mol/L for 1:2, 2:1, and 2:2 electrolyte solu-
tions. As in Figs. 7–9, the nonlinear PB theory overestimates
the z potential except at small values of the macroparticle

FIG. 7. Zeta potentials for a 1:1 electrolyte as a function of surface charge
density of macroparticles with radiusR51.5 nm andR50.5 nm. The open
circles and open triangles represent the Monte Carlo simulation results
~Refs. 24 and 25! for R51.5 nm andR50.5 nm, respectively. The dotted
and solid curves represent the results of the PB and DFT, respectively. The
HNC/MSA theory gives almost same results as the DFT in this case.

FIG. 8. Zeta potentials for a 2:2 electrolyte as a function of surface charge
density of macroparticle with radiusR51.5 nm. The open circles represent
the Monte Carlo simulation results~Refs. 24 and 25!; the dotted, dashed,
and solid curves represent the results of the HNC/MSA, PB, and DFT,
respectively.

FIG. 9. Zeta potentials for a 2:1 electrolyte as a function of surface charge
density of macroparticle with radiusR51.5 nm. The symbols and curves
have the same meaning as those in Fig. 8.
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radius and low electrolyte concentrations. In all cases, the
results from the present DFT are in good agreement with the
MC data.24,25 It is shown in Fig. 10 that for macroions dis-
persed in a solution containing only monovalent counterions,
the z potential declines as the radius of the macroparticle
falls while the surface charge density remains constant. The
trend becomes more significant in dilute electrolyte solu-
tions.

Figure 11 shows that the nonlinear PB theory is qualita-
tively different from the results from the present DFT and
MC simulations24,25 for the divalent counterions at large val-
ues of the macroparticle radius. According to the present
DFT, there is a maximum in the curves of thez potential as
a function of the inverse of the macroparticle radius for the
divalent counterions. The nonlinear PB theory is unable to
reproduce this maximum and predicts a monotonic increase
of thez potential with an increase of the macroparticle radius
for the divalent counterions.

C. Charge inversion

To characterize the oscillating behavior of charge density
profiles, we define the integrated charge distribution func-
tions P(r ):

P~r !5Z1E
0

r

(
i

4pzir i~r 8!r 82dr8. ~32!

The integrated charge distribution functionP(r ) repre-
sents the overall charge of the macroion and its surrounding
ionic clouds within radiusr. It can be easily calculated once
we have the density profiles for the counterions and coions
from DFT.

In Fig. 12 the present DFT results for the integrated
charge distribution functionP(r ) around a macroion are
compared to the canonical ensemble (NVT) MC simulation
results of Terao and Nakayama46 for 2:2 electrolyte solution
at an average concentrationCav51.25 mol/L and tempera-
ture T5300 K ~the corresponding dielectric constant of wa-
ter is «578!. In the NVT MC simulation of Terao and
Nakayama,46 the macroion with radiusR51.0 nm and charge
Z5220 is placed in the center of the cubic simulation box
with side lengthL510.0 nm. In addition toZ monovalent
counterions, the systems contains additional ions from 2:2
electrolytes, where the average concentration of electrolytes
in the box is 1.25 mol/L and the radius of all small ions is 0.4
nm. From Fig. 12 one can see that the predicted results from
the present DFT are in good agreement with the MC simu-

FIG. 10. Zeta potentials for~a! 1:1 and~b! 2:1 electrolytes as a function of
the inverse of the macroparticle radius at the surface charged densityQ
50.204 C/m2. In both cases the counterions are monovalent. The open
circles represent the Monte Carlo simulation results~Refs. 24 and 25!; the
dashed and solid curves represent the results of PB and DFT, respectively.

FIG. 11. Zeta potentials for~a! 1:2 and~b! 2:2 electrolytes as a function of
the inverse of the macroparticle radius at the surface charged densityQ
50.204 C/m2. In both cases the counterions are divalent. The open circles
represent the Monte Carlo simulation results~Refs. 24 and 25!. The dashed
and solid curves represent the results of PB and DFT, respectively.
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lation data,46 showing that the present DFT can be used to
study the interesting charge inversion phenomena.

Using the DFT developed in this work, we calculated the
integrated charge distribution functions around a spherical
macroparticle of radiusR51.5 nm and a surface charge den-
sity Q520.102 C/m2 ~corresponding to surface charge
numberZ5218) for 1:1, 2:1, and 2:2 electrolytes. The re-
sults are shown in Figs. 13~a!–13~c!, respectively. At low
electrolyte concentration (C50.05 mol/L), Fig. 13 shows
that P(r ) approaches zero monotonically asr→`, indicat-
ing that the charged spherical macroparticle is fully screened
at a distance much larger than the screen length. As the elec-
trolyte concentration increases (C51.0 mol/L), P(r ) for 2:1
and 2:2 electrolytes becomes positive at certain ranges ofr,
showing a charge inversion. This is because at larger concen-
trations of divalent counterions, the charged spherical mac-
roparticles in the aqueous solution strongly bind so many
oppositely charged small ions that the sign of the net macro-
particle charge becomes inverted. The overscreening phe-
nomenon may also be responsible for the attraction between
like-charged colloidal particles.47,49 At higher electrolyte
concentrations, charge inversion occurs in all three types of
electrolytes. To our knowledge, previous studies46,61 did not
find the charge inversion with monovalent counterions~at
ambient conditions!. Figure 13 shows that the charge inver-
sion with the monovalent counterions is much weaker than
that with the divalent counterions. In Figs. 13~b! and 13~c!,
the maximum ofP(r ) is closer to the surface of macropar-
ticles as the electrolyte concentration increases.

In Fig. 14 we plotted the reduced integrated charge dis-
tribution functionsP* (r )5P(r )/uZu for a charged spherical
macroparticle of radiusR51.5 nm dispersed in a 2:2 electro-
lyte solution. Various surface charge densities are considered.
The concentration of 2:2 electrolytes is fixed atC
50.25 mol/L. The charge inversion phenomenon is indeed
observed, but only at sufficiently high surface charge density.
The present DFT correctly predicts the occurrence of charge

inversion at high electrolyte concentrations and/or high sur-
face charge densities. The charge inversion phenomena pre-
dicted from the present DFT are consistent with the recent
molecular dynamics simulation results given by Messina
et al.32 Our calculations suggest that, as proposed by De-
sernoet al.20 and Messinaet al.,32 the local ion-size correla-
tions are responsible for the charge inversion phenonmena.
The charge inversion becomes more significant with an in-
crease of the excluded-volume effects in the system—i.e., at
higher ionic size and/or concentrations. As shown in Fig.
13~a!, charge inversion occurs even for macroions sur-
rounded by monovalent counterions.

IV. CONCLUDING REMARKS

A density-functional theory has been proposed for the
density distributions of small ions around a charged spherical

FIG. 12. Comparison between the predicted andNVT MC simulation re-
sults for the integrated charge distribution function around a macroion with
radius R51.0 nm and surface chargeZ5220 at T5300 K. There areZ
monovalent counterions in the cubic simulation box and the average con-
centration for 2:2 electrolyte solution in the box is 1.25 mol/L. The diameter
of small ions iss50.4 nm. The symbols represent the MC results. The
dashed and solid curves represent the results of the PB and DFT, respec-
tively.

FIG. 13. Integrated charge distribution functions around a charged spherical
macroparticle of radiusR51.5 nm and surface charge numberZ5218 cal-
culated from DFT in~a! 1:1, ~b! 2:1, and~c! 2:2 electrolyte solutions. The
dash-dotted, dashed, and solid curves correspond to concentrationsC
50.05, 1.0, and 1.5 mol/L, respectively. The insets give the full curves of
charge distribution functions at concentrationC50.05 mol/L.

7231J. Chem. Phys., Vol. 120, No. 15, 15 April 2004 Density functional theory for spherical electrical double layers

Downloaded 05 Apr 2004 to 166.111.34.107. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



macroparticle. The theory is partially perturbative since the
hard-sphere contribution to the free-energy functional is
evaluated from the improved fundamental measure theory
and the electrical contribution is approximated by a quadratic
expansion with respect to the corresponding bulk fluid. Ex-
tensive comparison with Monte Carlo simulations indicates
that the present DFT provides accurate ionic density distri-
butions for a charged spherical macroparticle immersed in
1:1, 1:2, 2:1, and 2:2 electrolyte solutions. The present DFT
successfully predicts the properties of counterion layering at
high surface charge density in a spherical EDL. It is con-
cluded from the present DFT that an increase of the surface
charge density or the radius of the spherical particle en-
hances the tendency for the formation of the second counter-
ion layer.

The results from the present DFT are also compared to
those from the nonlinear Poisson–Boltzmann theory and the
hypernetted-chain–mean-spherical approximation integral
equation theory. All these theories are in good agreement
with Monte Carlo simulation data for monovalent counteri-
ons at low concentration. For divalent counterions and/or
high concentrations, however, the results from the present
DFT and HNC/MSA theory are better than that from the
nonlinear PB equation. For divalent counterions and/or high
concentration, thez potential from the PB theory is qualita-
tively different from that obtained through the present DFT
and HNC/MSA theory. The present DFT and HNC/MSA
theory predict a maximum~or a minimum! z potential as a
function of the surface charge density or macroparticle ra-
dius, while the nonlinear PB theory is unable to predict this
maximum ~or minimum!. The present DFT gives a slightly
betterz potential than the HNC/MSA for divalent counteri-
ons, but for monovalent counterions, the two theories give
almost identical results. The similarity is due to the fact that
both theories use the direct correlation function for bulk fluid
from the MSA. In addition, the qualitative behavior of thez
potentials from the present DFT are consistent with observa-
tions from eletrophoretic mobility experiments.60,62

We have also investigated the integrated charge distribu-

tion function around a charged spherical macroparticle. The
charge oscillation and charge inversion phenomena have
been found for high electrolyte concentration and/or large
surface charge density. Interestingly, the charge inversion can
occur even for monovalent counterions at high ionic size
and/or concentration, which is different from the general
belief.46,61 From the DFT calculations we conclude that the
excluded volume plays a crucial role in the charge inversion.
The nonlinear PB theory is unable to predict charge inver-
sion phenomena because it ignores ionic size. In the PB
theory, charged colloidal particles are surrounded by oppo-
sitely charged counterions and the overlap of the counterion
atmosphere produces a purely repulsive interaction between
like-charged colloidal particles. Our results from the DFT
indicate that the above picture does not hold when the sur-
face charge density on the colloidal particles or the electro-
lyte concentration is sufficiently high.

Because the improved fundamental measure theory is
directly applicable to mixtures and the analytical expressions
for the direct correlation functions of bulk mixed electrolyte
solutions are available in the literature,63 extension of the
present DFT to study the distributions of real mixed electro-
lytes around a realistic charged colloidal particle is relatively
straightforward. To further improve the quantitative perfor-
mance of the present DFT, one may treat the bulk electrolyte
by means of more elaborate theories for the direct correlation
functions—for instance, the generalized mean spherical
approximation,44 which is thermodynamically self-consistent
and still analytical. It is also possible to include the solvent
~water! as a third component in the solution if the interac-
tions are pairwise decomposable and a theory for the bulk
uniform fluid is available.43 With these improvements, the
present DFT will be potentially useful to investigate thez
potential and eletrophoretic mobility of colloidal particles in
solution including proteins in aqueous electrolyte solutions.
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