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Because of the increasing interest in studying the phenomenon exhibited by charge-stabilized colloidal
suspensions in confining geometry, we present a density functional theory (DFT) for a hard-core multi-
Yukawa fluid. The excess Helmholtz free-energy functional is constructed by using the modified fundamental
measure theory and Rosenfeld’s perturbative method, in which the bulk direct correlation function is obtained
from the first-order mean spherical approximation. To validate the established theory, grand canonical ensemble
Monte Carlo (GCMC) simulations are carried out to determine the density profiles and surface excesses of
multi-Yukawa fluid in a slitlike pore. Comparisons of the theoretical results with the GCMC data suggest
that the present DFT gives very accurate density profiles and surface excesses of multi-Yukawa fluid in the
slitlike pore as well as the radial distribution functions of the bulk fluid. Both the DFT and the GCMC
simulations predict the depletion of the multi-Yukawa fluid near a nonattractive wall, while the mean-field
theory fails to describe this depletion in some cases. Because the simple form of the direct correlation function
is used, the present DFT is computationally as efficient as the mean-field theory, but reproduces the simulation
data much better than the mean-field theory.

I. Introduction

Understanding the structure and adsorption of fluids near solid
surfaces is relevant to many traditional applications such as gas
storage, oil recovery, heterogeneous catalyst reactions, removal
of various pollutants, and fabrication of colloid-based nano-
structured materials.1-3 The interplay between intermolecular
forces and external potential from solid surfaces makes the
behavior of these confined fluids of interest but difficult to
predict. Apart from the external potential, the intermolecular
interaction is the only factor that affects the structure of fluids
and the phenomena at the surface, such as adsorption, wetting,
capillary condensation, etc.4

The various interactions between atoms and molecules can
be calculated by using quantum mechanics, although such
calculations are far from trivial, requiring electron correlation
and large basis sets. In practice, we require some means to
accurately model the interatomic potential curve using a simple
empirical expression that can be rapidly calculated. Subse-
quently, the intermolecular interaction for an atomic fluid is
usually modeled by using a Lennard-Jones potential term for
van der Waals interactions and a Coulomb potential term for
electrostatic interactions.5 The Lennard-Jones potential, as
pointed out by Tang et al.,6 can be well approximated by a hard-
core repulsion with two-Yukawa tails. A charged colloidal

particle system interacting with a short-range attraction and a
long-range electrostatic repulsion has been successfully de-
scribed in the well-known Derjaguin-Laudan-Verwey-Over-
beek (DLVO) theory,7 which is also expressed as a Yukawa
potential. For example, the hard-core two-Yukawa potential has
been used to predict the thermodynamic and diffusion properties
of bovine serum albumin (BSA) in aqueous electrolyte solu-
tion8,9 and to explain the small-angle neutron scattering spectra
of cytochrome C protein solutions at moderate concentrations.10

Besides, the phase behavior of C60 molecular systems and
stability of colloidal dispersions has been accurately reproduced
by using the hard-core two-Yukawa model.11,12In principle, the
hard-core repulsion with three or more Yukawa tails can be
used to approximate the intermolecular potential by including
van der Waals interactions13 and electrostatic interactions.14

Therefore, we believe that the fluids with multi-Yukawa
potentials should be able to simulate real systems without losing
generality.

Because of the analytical availability and simplicity in solving
the Ornstein-Zernike integral equation with the mean spherical
approximation (MSA) closure, the phase equilibria, thermody-
namic, and structural properties of the attractive hard-core one-
Yukawa fluids and their mixtures have been investigated
extensively.15-26 The repulsive hard-core one-Yukawa fluid27

and the multi-Yukawa fluid28-30 also have received attention
in recent years for their important applications to protein systems
and colloidal suspensions.10,31 In addition to the MSA-based
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variations, there are achievements for the thermodynamics based
on the Barker-Henderson perturbation theory using hard
spheres as the reference.27,32The disadvantage of the perturba-
tion theory is its absence of structural information. For the
inhomogeneous case, the situation is different. The previous
investigations7,33-37 were concerned in the attractive and
repulsive hard-core one-Yukawa fluid. There is no report on
the inhomogeneous hard-core multi-Yukawa fluid up to now.
Analysis of the previous theoretical investigations results in two
groups of methods: one is integral equation theory and another
is density functional theory (DFT). It proves that the DFT is
more powerful than the integral equation theory in the prediction
of the structural properties of inhomogeneous Yukawa fluids.35

The key task in a DFT is to construct the expression of the
Helmholtz free-energy functional. Generally, the modified
fundamental measure theory (MFMT)38,39yields very accurate
density profiles for the hard-sphere fluids and their mixtures
near walls and in slitlike pores. The remaining problem is how
to handle the dispersion force contribution to the Helmholtz
free-energy functional. The most simple and popular method
for this problem is the so-called mean-field (MF) theory,4 which
is computationally efficient but describes some inhomogeneous
phenomena only qualitatively. Efforts to improve the MF theory
have been made by adopting the so-called effective reference
field or the effective external potential.40-42 The approach has
successfully addressed interfacial and hydrophobic phenomena
in inhomogeneous fluids, which is hardly expected from a
traditional MF theory. An alternative way to correct the MF
theory is to use the bulk direct correlation function (DCF)
obtained from the integral equation theory. The analytical form
of DCF was first generalized to the case of a multi-Yukawa
potential by Hoye and Blum.29 The correct coefficients of the
analytical form have to be obtained by solving a group of
nonlinear equations, and the complexity is increased with the
number of terms in the multi-Yukawa potential. In contrast, the
first-order mean spherical approximation (FMSA) solution
obtained by Tang et al.43 is straightforwardly a linear combina-
tion of individual one-Yukawa solutions, and has been applied
to homogeneous three- and four-Yukawa fluids.44 Because the
analytical form of DCF from the FMSA is much simpler than
that from the full MSA, the FMSA is adopted here to retrieve
the fluid structure.

In this work, we reformulate the Helmholtz free-energy
functional for the inhomogeneous hard-core multi-Yukawa fluid
through Rosenfeld’s perturbative method. The excess Helmholtz
free-energy functional due to hard-sphere repulsion is evaluated
from the MFMT, and dispersion contribution is approximated
by using a quadratic expansion of the residual Helmholtz free-
energy functional with respect to that for a uniform fluid of the
same chemical potentials. Then the theory is applied to
investigating the structure and adsorption of the hard-core multi-
Yukawa fluid in a slitlike pore as well as the radial distribution
function (RDF) of bulk multi-Yukawa fluid. To test the
performance of the established DFT, grand canonical ensemble
Monte Carlo (GCMC) simulations have been carried out to
obtain the density profiles and adsorption isotherms of the hard-
core multi-Yukawa fluid in the slitlike pore at different
temperatures and densities. In the following section, we present
the DFT for multi-Yukawa fluid. We briefly describe the
simulation method in Section III. We present and discuss the
numerical results for the density profiles, surface excesses, and
RDF in Section IV, and we end with some conclusions in
Section V.

II. Density Functional Theory

The hard-core Yukawa (HCY) potential with multiple tails
is given by

whereσ is the diameter of particles,r is the center-to-center
distance between two interacting particles,M is the number of
tails, εi and λi represent, respectively, the potential energy at
contact and the screening length of Yukawa taili.

In a density functional theory for an inhomogeneous hard-
core multi-Yukawa fluid, the grand potential functionalΩ[F-
(r )] is related to the Helmholtz energy functionalF[F(r )] via a
Legendre transform,

whereF(r ) is the equilibrium density distribution,Vext(r ) is the
external field, andµ is the chemical potential of the fluid.

The Helmholtz energy functionalF[F(r )] can be formally
expressed as an ideal-gas contributionFid[F(r )] plus an excess
term Fex[F(r )] that accounts for the hard-sphere repulsion and
van der Waals attraction,

The ideal-gas contribution to the Helmholtz energy functional
is exactly known as

wherek is the Boltzmann constant,T is the absolute temperature,
Λ ) h/(2πmkT)1/2 represents the thermal wavelength withh and
m standing for, respectively, the Planck constant and the mass
of the Yukawa sphere.

To derive the excess Helmholtz energy functional due to both
hard-sphere repulsion and van der Waals attraction, we incor-
porate the modified fundamental-measure theory (MFMT)
developed by Yu and Wu38,39 with Rosenfeld’s perturbative
method.45

whereΦhs[F(r )] is the excess Helmholtz free-energy density
due to hard-core repulsion, andnR(r ) is the weighted density
defined as

whereR ) 0, 1, 2, 3, V1, and V2. The weight functions,w(R)-
(r), are given by38,39,45,46

whereΘ(r) is the Heaviside step function, andδ(r) denotes the
Dirac delta function. Integration of the two scalar functions,
w(2)(r) andw(3)(r), with respect to the position gives the particle
surface area and volume, respectively, and integration of the
vector functionw(V2)(r ) is related to the gradient across a sphere

u(r) ) {∞ r e σ

- ∑
i)1

M εi exp[-λi(r - σ)/σ]

r/σ
r > σ (1)

Ω[F(r )] ) F[F(r )] + ∫ [Vext(r ) - µ]F(r ) dr (2)

F[F(r )] ) Fid[F(r )] + Fex[F(r )] (3)

Fid[F(r )] ) kT∫ drF(r )[ln(F(r )Λ3) - 1] (4)

Fex[F(r )] ) kT∫ Φhs[nR(r )] dr + Fatt
ex[F(r )] (5)

nR(r ) ) ∫ dr ′F(r ′)w(R)(r - r ′) (6)

w(2)(r) ) πσ2w(0)(r) ) 2πσw(1)(r) ) δ(σ/2 - r) (7)

w(3)(r) ) Θ(σ/2 - r) (8)

w(V2)(r ) ) 2πσw(V1)(r ) ) (r /r)δ(σ/2 - r) (9)
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in the r direction. In the MFMT, the Helmholtz free-energy
density consists of terms dependent on scalar- and vector-
weighted densities,

where the superscripts (S) and (V) represent the contributions
from scalar- and vector-weighted densities, respectively. The
scalar Helmholtz energy density is given by

and the vector part is expressed by

In eq 12,nV1 andnV2 are vectors, andnV1‚nV2 andnV2‚nV2 are
dot products. In the limit of a homogeneous fluid, the two
vector-weighted densitiesnV1 andnV2 vanish, and the Helmholtz
free-energy density becomes identical to that derived from the
Carnahan-Starling equation of state.47 It should be pointed out
that the tensor-weighted density is introduced to describe the
structures of the hard sphere crystal by Tarazona.48 However,
for hard sphere fluid, our previous work38,39 shows that the
Helmholtz free-energy functional without tensor-weighted den-
sity reproduces very accurate density profiles. Therefore we also
neglect the tensor-weighted density in this work.

To obtain the contribution of a long-range van der Waals
interaction to the excess Helmholtz energy functional, Rosenfeld
assumed that it could be perturbatively constructed around that
for the bulk fluid at equilibrium. According to Rosenfeld,45 we
can make a functional Taylor expansion of the residual
Helmholtz energy functional around that for a uniform fluid,
i.e.,

where∆F(r ) ) F(r ) - Fb andFb is the bulk density. The bulk
DCF due to the residual attraction are defined as

whereâ ) 1/kT and µatt
ex is the dispersive part of the excess

chemical potential. If we neglect all higher-order terms∆Catt
(n)b

(n > 2) in eq 13,Fatt
ex[F(r )] becomes

Equation 16 shows that the perturbative method is completely
free of any weighted density and of any higher-order DCFs.
Considering the system composed of particles interacting via
the hard-core multi-Yukawa potential,∆Catt

(2)b(|r ′ - r |) is given
by

whereCMY
(2)b(|r ′ - r |) andChs

(2)b(|r ′ - r |) are the bulk second-
order DCFs of a hard-core multi-Yukawa fluid and a hard-sphere
fluid, respectively. Their analytical expressions can be obtained
by solving the Ornstein-Zernike (OZ) equation within proper
approximation closures. For the hard-core multi-Yukawa fluid,
the most popular approach is to calculate∆Catt

(2)b(|r ′ - r |) from
the mean spherical approximation (MSA) due to its analytical
expression in reasonable accuracy. However, the parameters in
the expression of∆Catt

(2)b(|r ′ - r |) are 3M functions of bulk
densityFb, energy parameterεi, and screening parametersλi,
and can be only obtained by solving 3M-coupled nonlinear
equations.29 This makes the calculation complicated for the
multi-Yukawa fluid. Alternatively, the analytical expression of
∆Catt

(2)b(|r ′ - r |) obtained from the first-order MSA44 is
selected in this work, i.e.,

where

with η ) πFbσ3/6, ∆ ) 1 - η, t ) λi andP(r, λi) defined as

The equilibrium density distribution for the hard-core multi-
Yukawa fluid is obtained by minimization of the grand potential
functionalΩ[F(r )], which yields

where µhs
ex is the hard-sphere part of the chemical potential,

Φhs[nR(r )] ) Φhs(S)[nR(r )] + Φhs(V)[nR(r )] (10)

Φhs(S)[nR(r )] ) - n0 ln(1 - n3) +
n1n2

1 - n3
+

n2
3 ln(1 - n3)

36πn3
2

+
n2

3

36πn3(1 - n3)
2

(11)

Φhs(V)[nR(r )] ) -
nV1‚nV2

1 - n3
-

n2nV2‚nV2 ln(1 - n3)

12πn3
2

-

n2nV2‚nV2

12πn3(1 - n3)
2

(12)

Fatt
ex[F(r )] ) Fatt

ex(Fb) + ∫ dr
δFatt

ex

δF(r )
∆F(r ) +

1
2∫ dr dr ′

δ2Fatt
ex

δF(r )δF(r ′)
∆F(r )∆F(r ′) + ‚‚‚ (13)

∆Catt
(1)b ) - â

δFatt
ex

δF(r )
) - âµatt

ex (14)

∆Catt
(2)b(|r ′ - r |) ) - â

δ2Fatt
ex

δF(r )δF(r ′)
(15)

Fatt
ex[F(r )] ) Fatt

ex(Fb) + µatt
ex ∫ dr∆F(r ) -

kT
2 ∫ dr dr ′∆Catt

(2)b(|r ′ - r |)∆F(r )∆F(r ′) + ‚‚‚ (16)

∆Catt
(2)b(|r ′ - r |) ) CMY

(2)b(|r ′ - r |) - Chs
(2)b(|r ′ - r |)

(17)

∆Catt
(2)(r) ) {∑

i)1

M

âεi

e-λi(r-σ)/σ

r/σ
, r > σ

∑
i)1

M

Y(r,εi,λi) , r e σ

(18)

Y(r,εi,λi) ) âεi[σ e-λi(r-σ)/σ

r
- Q(λi)P(r,λi)] (19)

Q(t) ) [S(t) + 12ηL(t)e-t]-2 (20)

S(t) ) ∆2t3 + 6η∆t2 + 18η2t - 12η(1 + 2η) (21)

L(t) ) (1 + η/2)t + 1 + 2η (22)

P(r,t) ) S2(t)
σe-t(r-σ)/σ

r
+ 144η2L2(t)

σet(r-σ)/σ

r
-

12η2[(1 + 2η)2t4 + ∆(1 + 2η)t5]r3/σ3 + 12η[S(t)L(t)t2 -
∆2(1 + η/2)t6]r/σ - 24η[(1 + 2η)2t4 + ∆(1 + 2η)t5] +

24ηS(t)L(t)σ/r (23)

ln[F(r )

Fb
] ) â[µhs

ex - ∫ dr ′∑
R

∂Φhs

∂nR

w(R)(r ′ - r )] -

âVext(r ) + ∫ dr ′∆Catt
(2)b(|r ′ - r |)∆F(r ′) (24)
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which can be obtained from the Carnahan-Starling equation
of state47

When the hard-core multi-Yukawa fluid is confined in a slit
pore or around a fixed spherical particle, the density profiles
vary only in thez-direction orr-direction, i.e.,Fi(r ) ) Fi(z) or
Fi(r ) ) Fi(r), and can be solved from eq 24 by using the Picard-
type iterative method. In the calculation, the weighted densities
and the integrals in eq 24 are evaluated by using the trapezoidal
rule with the step size∆z or ∆r ) 0.005σ, and the iteration
repeats until the percentage change is smaller than 0.001 at all
points.

III. Monte Carlo Simulation

To test the performance of the DFT established above, the
grand canonical ensemble Monte Carlo (GCMC) simulations
are carried out in this work. The details of the simulations have
been described elsewhere.35 The GCMC simulations are per-
formed with the excess chemical potential obtained from the
canonical ensemble Monte Carlo (CMC) simulations by using
the Widom test particle method. The simulated fluids are
confined between two parallel walls with the distance of 10σ.
The simulation box is cubic (10σ × 10σ × 10σ), and the cutoff
distance of the Yukawa tails is set to be 5σ. The usual periodic
boundary conditions and minimum imagine conventions are
applied in the directions parallel to the walls. The density
profiles of the hard-core two-, three-, and four-Yukawa fluids
confined in the slitlike pores at different temperatures and
densities are simulated in this work. In addition, the adsorption
isotherms of the hard-core two-Yukawa fluid in the slitlike pores
are also obtained by using the GCMC simulations.

IV. Results and Discussions

A. Hard-Core Multi-Yukawa Fluid in a Slitlike Pore. We
first discuss the density distributions of a hard-core multi-
Yukawa fluid confined in a slitlike pore under various condi-
tions. In this case, the external potential from the parallel walls
can be expressed as

where

whereεW is the energy parameter of the wall,λW is the screening
length of Yukawa tail for the wall,z is the perpendicular distance
from the left wall andH is the width of the slitlike pore.
Throughout this work, the screening length for the wall isλW

) 1.8, the width of the pore isH ) 10σ, and the reduced
temperature is defined asT* ) kT/ε1.

In Figures 1-3, the density profiles predicted from the present
DFT are compared with those from the GCMC simulations
carried out in this work for the two-Yukawa fluid (λ1 ) 2.8647,
λ2 ) 13.5485, andε2/ε1 ) -1.4466) in a slitlike pore at
temperatureT* ) 4.0, 1.25, and 0.6, respectively. In this case,
the two-Yukawa fluid mimics the Lennard-Jones potential,
which is repulsive near the contact distance but becomes
attractive at long enough distance. For each density, two wall
energy parametersεW/kT ) 0 and 1.0 are considered. Figures 1

and 2 suggest that the higher the wall energy parameter or the
bulk density is, the larger the magnitude of the density
oscillation. The density profiles shift toward the wall as the
density is increased, and there is a significant accumulation of
spheres near the wall at high bulk density and/or large value of
εW. Both the present DFT and MF theories predict the density
profile well except for slightly overestimating the contact density
from the MF theory atT* ) 1.25 andFbσ3 ) 0.4. It should be
mentioned that the MF theory used here is implemented by using
the MFMT for the hard-core repulsion.

As the temperature is decreased, the density profile exhibits
fewer oscillations and monotonically decreases at the approach
of the nonattractive wall, as shown in Figure 3. This depletion
is the result of the competition between excluded-volume and
long-range attraction interaction: the former favors accumulation
of spheres near the wall, while the latter holds back the spheres
close to the wall. At low temperature and low density, the
attractive interaction prevails and the density profile shows
depletion. The comparisons of theoretical predictions with the
GCMC simulation data show that the performance of the present
DFT is excellent. In contrast, the MF theory overestimates the
density profile in the vicinity of the wall and gives incorrect
oscillatory behaviors. Figure 3 demonstrates that the MF theory

âµhs
ex )

η(8 - 9η + 3η2)

(1 - η)3
(25)

Vext(z) ) {W(z) + W(H - z) σ/2 e z e H - σ/2
∞ otherwise

(26)

W(z) ) - εW exp{- λW(z - σ/2)/σ} (27)

Figure 1. Reduced density profiles of a hard-core two-Yukawa fluid
(λ1 ) 2.8647,λ2 ) 13.5485,ε2/ε1 ) -1.4466) confined in a slitlike
pore with wall energyεW/kT ) 0 and 1.0 at reduced temperatureT* )
4.0 and reduced densityFbσ3 ) 0.5 (inset) and 0.7. The symbols and
solid curves represent the results from the GCMC simulations and the
DFT, respectively. To enhance visual clarity, the density profiles for
εW/kT ) 1.0 atFbσ3 ) 0.5 (inset) and 0.7 are shifted upward by 0.2
and 0.5, respectively.

Figure 2. Reduced density profiles of a hard-core two-Yukawa fluid
(λ1 ) 2.8647,λ2 ) 13.5485,ε2/ε1 ) -1.4466) confined in a slitlike
pore with wall energyεW/kT ) 0 and 1.0 at reduced temperatureT* )
1.25 and reduced densityFbσ3 ) 0.4 (inset) and 0.7. The symbols,
dashed and solid curves represent the results from the GCMC
simulations, MF theory and DFT, respectively. To enhance visual
clarity, the density profiles forεW/kT ) 1.0 atFbσ3 ) 0.4 (inset) and
0.7 are shifted upward by 0.2 and 0.5, respectively.
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is not only quantitatively unreliable but also qualitatively
questionable because of its failure to describe the depletion near
the wall at the low temperature. In addition, the MF theory gives
too strong density oscillation for fluid with the long-range
attractive force due to its neglect of the structural free-energy
functional. Figure 4 presents the results of the present DFT as
well as its comparisons with the GCMC simulation data under
the same conditions as in Figure 1 but forT* ) -1.25. At this
temperature, the potential is attractive at short distance but
becomes repulsive at enough long distance. The density profiles
are similar to those in Figure 2, but higher contact densities are
observed atT* ) -1.25.

Figure 5 depicts the BSA density profiles of BSA-NaCl
aqueous solution confined in a slitlike pore at 298.15 K, pH
4.7 and ionic strengthI ) 0.1mol/L. The interaction between

charged BSA surrounded by counterions includes a van der
Waals attraction and the screened Coulombic repulsion, which
can be expressed as two-Yukawa tails. We useε1/k ) 91.3 K
andλ1 ) 1.8 for the van der Waals interaction and obtain the
Yukawa potential parameters from the DLVO theory for the
screened Coulombic repulsion, i.e.,

wherezp is the charge number of BSA,e is the charge of an
electron,D is the dielectric constant of pure water, andκ is the
Debye screening parameter, which is given by

whereNA is the Avogadro constant,ci andzi are, respectively,
the molar concentration and the valence of microioni. Under
the condition given above, the hard-core diameter and the charge
number of BSA are 7.20 nm and+4.5, respectively. Then from
eqs 25 and 26, we obtainε2/k ) -141.8 K andλ2 ) 2.1132.
The density profiles of BSA in Figure 5 show some analogy to
those in Figure 4, exhibiting oscillations near the wall. In both
cases plotted in Figures 4 and 5, the density profiles predicted
from the present DFT are in excellent agreement with those
from the GCMC simulations.

In Figures 6 and 7, the density profiles from the present DFT
are compared with those from the GCMC simulations for the
hard-core three-Yukawa fluid with potential parametersλ1 )
1.8, λ2 ) 4.0, λ3 ) 24.0,ε2/ε1 ) -1.0, andε3/ε1 ) -1.0. In
this case, there are attractive and repulsive interactions outside
the hard-core, but the repulsive interactions are smaller than
the attractive one. From Figures 6 and 7, we can see that the
present DFT accurately reproduces the density profiles of the
three-Yukawa fluid in the slitlike pore at moderate to high
temperatures. When the temperature is decreased toT* ) 0.7
(see Figure 7), depletion is found near the nonattractive wall.
Different from the case shown in Figure 3, the present DFT
slightly overestimates the density at contact and the MF theory
underestimates the density profiles at all positions in the pore.

Figure 8 illustrates the comparisons of the predicted density
profiles with the GCMC simulation data for the four-Yukawa
fluid with potential parametersλ1 ) 1.8, λ2 ) 4.0, λ3 ) 8.0,

Figure 3. Reduced density profiles of a hard-core two-Yukawa fluid
(λ1 ) 2.8647,λ2 ) 13.5485,ε2/ε1 ) -1.4466) confined in a slitlike
pore with wall energyεW/kT ) 0 and 1.0 at reduced temperatureT* )
0.6 and reduced densityFbσ3 ) 0.4. The symbols, dashed and solid
curves represent the results from the GCMC simulations, MF theory
and DFT, respectively. To enhance visual clarity, the density profile
for εW/kT ) 1.0 is shifted upward by 0.2.

Figure 4. Same as in Figure 1 butT* ) -1.25.

Figure 5. BSA density profiles of BSA-electrolyte solution confined
in a slitlike pore with wall energyεW/kT ) 0 and 1.0 at 298.15 K, pH
4.7, and ionic strengthI ) 0.1 mol/L and reduced bulk densityFbσ3 )
0.6.

Figure 6. Reduced density profiles of a hard-core three-Yukawa fluid
(λ1 ) 1.8,λ2 ) 4.0,λ3 ) 24; ε2/ε1 ) -1.0; ε3/ε1 ) -1.0) confined in
a slitlike pore with wall energyεW/kT ) 0 and 1.0 at reduced
temperatureT* ) 5.0 and reduced densityFbσ3 ) 0.4 (inset) and 0.7.
The symbols and solid curves represent the results from the GCMC
simulations and the DFT, respectively. To enhance visual clarity, the
density profiles forεW/kT) 1.0 atFbσ3 ) 0.4 (inset) and 0.7 are shifted
upward by 0.1 and 0.5, respectively.

ε2 ) -
zp

2e2

σD(1 + κσ/2)2
andλ2 ) κσ (28)

κ
2 ) ∑

i

NAcizi
2e2

DkT
(29)
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λ4 ) 12.0,ε2/ε1 ) -0.5,ε3/ε1 ) -0.5, andε4/ε1 ) -1.0 atT*
) 3.0 andFbσ3 ) 0.6. As expected, an excellent agreement
between the results predicted from the present DFT and the
GCMC simulation data is achieved. From all the results
described above, we find that the present DFT predicts very
accurate density profiles of the multi-Yukawa fluid in the slitlike
pore under all the conditions considered in this work. In contrast,
the MF theory may overestimate or underestimate the density
profiles at low temperatures.

B. Surface Excess.The surface excessΓex is a quantity of
interest in experiments. It is defined as

In this work, we consider the hard-core two-Yukawa fluid with
potential parametersλ1 ) 2.8647,λ2 ) 13.5485, andε2/ε1 )
-1.4466, which is used to approximate the Lennard-Jones
potential. Figure 9 depictsΓex as a function of bulk density at
T* ) 1.0 for two-wall energy parametersεW/kT ) 0 and 1.0.
For the surface without attraction,Γex deceases at first, and then
increases rapidly as the bulk density is increased. This behavior
can also be explained in terms of long-range attractive interac-
tion and of excluded volume effects. Figure 9 shows that long-
range attractive interaction is dominant at low density, and
excluded volume interactions begin to play an important role
at high density. As a consequence of the interplay between two

effects,Γex displays a nonmonotonic variation with bulk density,
both in the theory and in the simulations. For attractive surfaces,
the surface excess is high. The curve ofΓex as a function of
bulk density is similar to that for the surface without attraction
except in the range of very low density (Fbσ3 < 0.1). An
interesting phenomenon is observed at very low density, i.e.,
Γex increases rapidly as the density is increased. This finding
indicates that the surface attraction dominates the adsorption at
very low density. The present DFT reproduces the surface excess
quite well. While the trends ofΓex predicted from the MF theory
as a function of bulk density are only in qualitative agreement
with the GCMC simulations, its quantitative performance
remains unsatisfactory. At moderate to high densities, the MF
theory predicts an adsorption excess higher than what is seen
in the GCMC simulation.

C. Radial Distribution Function. To demonstrate the
applicability of present DFT to bulk multi-Yukawa fluid, we
compare the predicted radial distribution function (RDF) with
the Monte Carlo simulation data for the two-Yukawa fluid with
potential parametersλ1 ) 1.8, λ2 ) 4.0, andε2/ε1 ) -3.0. In
this case, the potential is repulsive at short distances and
becomes attractive at long distances. The RDF is calculated
based on the idea of Percus’ test-particle method. If we fix a
sphere, then the external potential produced by the fixed sphere
is given by

If the density profile of other spheres around the fixed one is
obtained from the present DFT, the RDFg(r) is obtained through

Figure 10 depicts the predicted RDF for the two-Yukawa fluid
at T* ) 2.0 andFσ3 ) 0.8, along with the canonical ensemble
Monte Carlo (CMC) simulation data of Lin et al.31 The
agreement between the present DFT and the computer simula-
tion is excellent, while the MF theory predicts a lower contact
value and weaker oscillations when compared to the CMC
simulation data. In Figure 11, we plot the contact value of RDF
as a function of density atT* ) 1.5 and 3.0. The contact value
increases monotonically with the density. The present DFT
predicts a very accurate contact value of RDF, while the MF

Figure 7. Reduced density profiles of a hard-core three-Yukawa fluid
(λ1 ) 1.8,λ2 ) 4.0,λ3 ) 24; ε2/ε1 ) -1.0; ε3/ε1 ) -1.0) confined in
a slitlike pore with wall energyεW/kT ) 0 and 1.0 at reduced
temperatureT* ) 0.7 and reduced densityFbσ3 ) 0.4. The symbols,
dashed and solid curves represent the results from the GCMC
simulations, MF theory and DFT, respectively. To enhance visual
clarity, the density profile forεW/kT ) 1.0 is shifted upward by 0.1.

Figure 8. Reduced density profiles of a hard-core four-Yukawa fluid
(λ1 ) 1.8,λ2 ) 4.0,λ3 ) 8, λ4 ) 12; ε2/ε1 ) -0.5,ε3/ε1 ) -0.5,ε4/ε1

) -1.0) confined in a slitlike pore with wall energyεW/kT ) 0 and
1.0 at reduced temperatureT* ) 3.0 and reduced densityFbσ3 ) 0.6.
The symbols and solid curves represent the results from the GCMC
simulations and the DFT, respectively. To enhance visual clarity, the
density profile forεW/kT ) 1.0 is shifted upward by 0.5.

Γex ) ∫σ/2

H-σ/2
[F(z) - Fb] dz (30)

Figure 9. Adsorption isotherms of a hard-core two-Yukawa fluid (λ1

) 2.8647,λ2 ) 13.5485,ε2/ε1 ) -1.4466) confined in a slitlike pore
with wall energyεW/kT ) 0 and 1.0 at reduced temperatureT* ) 1.0.
The symbols, dashed and solid curves represent the results from the
GCMC simulation, MF theory and present DFT, respectively.

Vext(r) ) {∞ r < σ

- ∑
i)1

M εi exp[-λi(r/σ - 1)]

r/σ
r g σ (31)

g(r) ) F(r)/Fb (32)
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theory substantially underestimates the contact value of RDF
at both temperatures. Nevertheless, as expected, the two theories
give the same limiting contact value of RDF as the density tends
to zero. From Figures 10 and 11, we conclude that the present
DFT is applicable to the structural and thermodynamic properties
of the bulk multi-Yukawa fluid.

V. Conclusions

Because of increasing interest in studying the phenomenon
exhibited by fluid systems with a van der Waals force and a
long-range repulsion, we present a density functional theory for
a hard-core multi-Yukawa fluid. The excess Helmholtz free-
energy functional is constructed by using the modified funda-
mental measure theory of Yu and Wu38 for hard-core contri-
bution and Rosenfeld’s perturbative method for dispersion
contribution. The resulting Helmholtz free-energy functional for
the dispersion is a quadratic expansion with respect to the
corresponding bulk fluid, in which bulk direct correlation
function is the analytical solution of the Ornstein-Zernike
integral equation with the first-order mean spherical approxima-
tion (FMSA) closure. The obtained theory is simple in form
and easy to implement.

To validate the present DFT, grand canonical ensemble Monte
Carlo (GCMC) simulations have been carried out to simulate
the density profiles and surface excesses of the hard-core multi-
Yukawa fluids confined in the slitlike pores. Extensive com-
parisons of the theoretical predictions with the GCMC simu-

lation data show that the present DFT is quite accurate. It is
capable of describing the surface depletion of multi-Yukawa
fluids at low temperature. In contrast, the well-known mean-
field theory overestimates or underestimates the density profiles
in the vicinity of the solid surface for the multi-Yukawa fluids
at low temperature and fails to account for the surface depletion
in some cases.

When the present DFT is applied to the calculation of the
radial distribution function for the two-Yukawa fluid, an
excellent agreement between the predictions from the DFT and
the simulation data is achieved. However, the MF theory
substantially underestimates the radial distribution function in
the vicinity of contact for the system considered in the text. It
is concluded that the present DFT is comprehensively reliable
and computationally efficient and can be used to predict the
structural and thermodynamic properties of both inhomogeneous
and homogeneous multi-Yukawa fluids. It is most promising
for practical applications such as gas storage, colloidal suspen-
sions in confining geometry, removal of various pollutants, etc.
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