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The interaction between colloidal particles is well represented by a hard-core two-Yukawa potential.
In order to assess the accuracy of theoretical predictions for the thermodynamic and structural
properties of mixed colloids, standard Monte Carlo simulations are carried out for the hard-core
two-Yukawa mixtures. In the simulations, one range parameter in the two-Yukawa potential is taken
as 1.8 or 2.8647, and another is taken as 4, 8, or 13.5485. Both attractive and repulsive dominant
cases of the potential outside the hard core are considered. The effects of temperature, density,
composition, size and energy parameter ratios on internal energy, compressibility factor, and radial
distribution function are investigated extensively. Theoretical calculations are performed in the
framework of analytical solution for the Ornstein-Zernike equation with the first-order mean
spherical approximation (FMSA). Our analysis shows that the FMSA is very accurate for the
prediction of the compressibility factor of the hard-core two-Yukawa mixtures at all conditions
studied. The FMSA generally predicts accurate internal energy, but overestimates the internal energy
of the systems at lower temperatures. Furthermore, we found that a simplified exponential version
of the FMSA predicts fairly good radial distribution function at contact for the mixed two-Yukawa
fluids. The comparison of the theoretical compressibility factor with that from the Monte Carlo
simulations suggests that the FMSA can be used to investigate the fluid-fluid equilibria of hard-core

two-Yukawa mixtures. © 2008 American Institute of Physics. [DOI: 10.1063/1.2815802]

I. INTRODUCTION

The various interactions between atoms and molecules
govern the structural and thermodynamic properties of fluids.
In principle, they can be calculated using quantum mechan-
ics, but such calculations are far from trivial, requiring elec-
tron correlation and large basis sets.' In practice, we model
the interatomic potential curve using a simple empirical ex-
pression such as square-well, Lennard-Jones, Yukawa poten-
tials, etc. Among the empirical potentials, the fluid with
multi-Yukawa potential is able to simulate real systems with-
out losing generality. It can be successfully applied to a wide
variety of real systems including charge-stabilized colloids,’
dusty plasmas,3 microemulsions,”* globular proteins,s’6 and
Cyo fullerene systems.7 A charged colloidal particle system
with a short-range attraction and a long-range electrostatic
repulsion has been successfully described on the basis of the
well-known Derjaguin-Laudan-Verwey-Overbeek (DLVO)
theory, which is also expressed as a Yukawa potential.5 The
hard-core two-Yukawa (HCTY) potential has been used to
predict thermodynamic and diffusion properties of globular
proteins in aqueous electrolyte solution®® and to explain the
small-angle neutron scattering spectra of cytochrome C pro-
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tein solutions at moderate concentrations.” In addition, the
Lennard-Jones potential can also be well approximated by a
hard-core repulsion with two-Yukawa tails.'”

An obvious advantage of Yukawa potential is that the
analytical expressions for structural and thermodynamic
properties of fluid are easy to obtain. Waisman'' obtained the
analytical solution of the Ornstein-Zernike (OZ) integral
with the mean spherical approximation (MSA) for one-
Yukawa potential in 1973. Then the analytical solution based
on the MSA is extended to a system of particles interacting
with a multi-Yukawa potential by Blum and HQiye.12 Most of
the previous studies on pure Yukawa fluid concern some sort
of numerical techniques leading to the convergence
problems.2 Using the inverse temperature expansion of the
MSA free energy up to the fifth term, Henderson et al.”
obtained an analytical equation of state. Another simple form
of pressure equation for the one-Yukawa fluid is proposed in
terms of a scaling parameter r. By performing an infinite
expansion of the free energy in terms of the inverse
ternperature,15 the theory of Henderson et al.”® can be made
more accurate for equation of state. Recently, Lin et al.'®
revised the excess entropy for the two-Yukawa fluid and ob-
tained an equation of state that can be used to accurately
predict the thermodynamic properties for the HCTY fluid. In
recent years, a numerous computer simulation data have
been used to test the prediction accuracy of the integral equa-
tion theory and perturbation theory for the phase transition,
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TABLE I. Radial distribution function at contact, internal energy, and compressibility factor of hard-core
two-Yukawa fluid mixture from Monte Carlo simulations for o,/0,=0.5, £,/£,=0.5, N\ ;=\ |,=\; ,=1.8,

Ny 1=4.0, and k;=k,=1.0 (case 1).

T Xy P’ gnloy) gx(0) gn(o1) U/NkyT zZ
1.5 0.5 0.3 4.249 2.113 2.839 —1.058 0.537
0.5 4.118 2.292 2.979 -1.693 0.333
0.7 3.675 2.403 2.955 -2.174 0.186
0.9 3.487 2.528 2.989 -2.661 0.083
1.1 3.690 2.756 3.203 -3.248 0.136
1.3 4.234 3.114 3.602 -3.915 0.522
2.0 0.5 0.3 2.690 1.750 2.130 -0.649 0.778
0.5 2.708 1.879 2.243 —1.064 0.691
0.7 2.790 2.037 2.385 -1.479 0.669
0.9 3.001 2.242 2.592 -1.918 0.755
1.1 3.395 2.513 2.906 -2.397 1.039
1.3 4.041 2.893 3.359 -2.915 1.678
3.0 0.25 0.5 1.994 1.518 1.733 -0.346 1.023
0.7 2.076 1.602 1.818 -0.488 1.064
0.9 2.176 1.701 1.925 -0.635 1.132
1.1 2.318 1.815 2.052 -0.786 1.234
1.3 2.512 1.948 2.210 -0.945 1.387
3.0 0.5 0.3 2.025 1.512 1.727 -0.395 0.986
0.5 2.162 1.643 1.878 -0.665 1.043
0.7 2.374 1.814 2.065 -0.948 1.184
0.9 2.706 2.047 2.327 -1.252 1.471
1.1 3.194 2.337 2.682 —1.581 1.990
1.3 3.917 2.732 3.176 -1.934 2.903
3.0 0.75 0.3 2.116 1.587 1.806 -0.636 0.973
0.5 2.383 1.777 2.054 -1.081 1.132
0.7 2.852 2.117 2.418 -1.568 1.592
0.9 3.641 2.571 2.978 -2.112 2.651
1.1 5.000 3.281 3.879 -2.714 4.960
1.3 7.478 4.521 5.417 -3.369 9.969

and the thermodynamic and structural properties for the at-
tractive and repulsive one-Yukawa fluids'""® and the HCTY
fluid."!

It should be mentioned that the analytical solution of the
OZ equation with the first-order mean spherical approxima-
tion (FMSA) proposed by Tang10 and Tang et al.®® has a
relatively simpler expression for the thermodynamic proper-
ties of hard-core multi-Yukawa fluid, and it also predicts the
compressibility factor of HCTY fluid very well.’ This
FMSA theory has been recently applied to calculate the con-
centration dependence of the osmotic pressure for four
globular proteins in aqueous electrolyte solutions.’

In contrast to the pure fluid with Yukawa potential, few
works have been reported for HCTY fluid mixture. Theoreti-
cally, the analytical solution of the OZ equation with the
MSA derived by Blum and H(zﬁye12 has been extended to the
hard-core multi-Yukawa mixtures by Arrieta et al.,22 while
no computer simulation is carried out to test this analytical
results for multi-Yukawa mixtures. Recently, Scholl-
Paschinger et al® predicted the phase diagram for the binary
symmetric hard-core Yukawa mixture using a self-consistent
OZ equation and compared their numerical results with the
Monte Carlo (MC) simulation data. Giacometti et al.** com-

pared the structural properties of binary one-Yukawa mix-
tures from the hypernetted-chain and Percus-Yevick approxi-
mations with the corresponding simulation data. Among the
various approximations for the OZ equation, only MSA gives
analytical solution for the multi-Yukawa mixtures. However,
in the MSA approach, the correct coefficients of the analyti-
cal form have to be obtained by solving a group of nonlinear
equations, and the complexity is increased with the number
of terms in the multi-Yukawa potential and the components
in the system. Fortunately, the FMSA can avoid solving the
group of nonlinear equations and still give analytical expres-
sion of Helmholtz free energy. Therefore, the FMSA is
adopted here to retrieve the thermodynamic and structural
properties of mixed colloids.

Colloidal dispersion systems include blood, proteins in
solution, milk, ink, etc. They are very important for biology,
industrial production, and our everyday life.”® Since these
systems are generally polydisperse in size and in interaction
energy, we investigate here the thermodynamic and structural
properties for binary mixed colloids as a starting point. We
model the mixed colloidal system as a binary HCTY mix-
ture, where the first Yukawa tail is used to simulate the van
der Waals interaction and the second Yukawa tail is for the
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TABLE II. Radial distribution function at contact, internal energy, and compressibility factor of hard-core
two-Yukawa fluid mixture from Monte Carlo simulations for o,/0,=0.5, £,/£,=0.5, N\ ;=\ |,=\; ,=1.8,

N,,1=8.0, and k;=k,=—6.0 (case 2).

T Xj o’ guloy) g2(02) gn(o) U/NkgT z
2.0 0.5 0.3 0.123 0.373 0.236 -0.057 1.439
0.5 0.178 0.469 0.313 -0.037 2.006
0.7 0.278 0.606 0.432 0.064 2.927
0.9 0.458 0.803 0.614 0.280 4.344
1.1 0.777 1.074 0.890 0.645 6.410
1.3 1.335 1.461 1.307 1.179 9.351
3.0 0.25 0.5 0.288 0.566 0.429 0.034 1.476
0.7 0.355 0.642 0.504 0.069 1.769
0.9 0.452 0.735 0.597 0.121 2.145
1.1 0.577 0.851 0.713 0.193 2.619
1.3 0.749 0.986 0.860 0.289 3.213
3.0 0.5 0.3 0.272 0.545 0.409 -0.015 1.436
0.5 0.373 0.667 0.523 0.017 1.948
0.7 0.537 0.826 0.679 0.102 2.732
0.9 0.802 1.043 0.906 0.260 3.900
1.1 1.218 1.331 1.231 0.509 5.585
1.3 1.891 1.737 1.696 0.863 7.996
3.0 0.75 0.3 0.315 0.601 0.457 -0.05 1.718
0.5 0.501 0.798 0.648 0.026 2.787
0.7 0.855 1.088 0.955 0.260 4.696
0.9 1.525 1.553 1.466 0.717 7.923
1.1 2.792 2.247 2.316 1.447 13.250
1.3 4.282 5.306 3.518 2.433 20.575
6.0 0.5 0.3 0.591 0.794 0.705 0.009 1.419
0.5 0.760 0.936 0.854 0.036 1.862
0.7 1.007 1.113 1.053 0.089 2.505
0.9 1.362 1.349 1.324 0.175 3.430
1.1 1.877 1.649 1.690 0.303 4.751
1.3 2.635 2.065 2.192 0.477 6.646

DLVO interaction between charge-stabilized colloids. We re-
formulate the Helmholtz free energy, internal energy, and
radial distribution function at contact for the HCTY mixture
within the framework of the FMSA. To test the performance
of the FMSA, standard canonical ensemble MC simulations
have been carried out to obtain the radial distribution func-
tion, compressibility factor, and internal energy for the bi-
nary HCTY mixture at different temperatures, densities,
compositions, and energy parameter ratios.

In what follows, we present the MC simulation method
to calculate structural and thermodynamic properties of bi-
nary HCTY mixtures in Sec. II. We describe the analytical
theory in Sec. III. We present and discuss numerical results
for the compressibility factor, internal energy, and radial dis-
tribution function in Sec. IV, and some conclusions are given
in Sec. V.

Il. MONTE CARLO SIMULATIONS

Canonical ensemble (NVT) Monte Carlo simulations
were performed for the structural and thermodynamic prop-
erties of binary HCTY fluid mixtures under various condi-
tions, where N is the number of particles, T is the absolute

temperature, and V is the volume of the system. The interac-
tions between the HCTY particles are described as

o, r= O-l'j

r> O-l'j’

bl

2
“ij(r) =) E Sk,ijexp[_ )\k,ij(”/o'ij -1)] (1)
k=1

r/O',~

where r is the center-to-center distance between two interact-
ing particles, o;; is the hard-core diameter of particle i, & ;;
and A\, ; represent, respectively, the potential energy param-
eter and the screen length of kth Yukawa tail. The first
Yukawa tail represents the van der Waals interaction, and in
this case, we assume X ;=\, ;=\;;. Since the second
Yukawa tail represents the DLVO theory, we can obtain
Ny il 0=\, jil ;=N ;;/ 0y; from the fact that the two Kinds
of colloids are in the same electrolyte solution. If we let
e1;;=¢;; and &,;;=k;e;;, the Lorentz-Berthelot combining
rule can be used to obtain the cross parameters of energy and
hard-core diameter, i.e., &;=(g;)"%, k;j=(kk)"*(|k;]|/k,),
and o0;;=(0;+0;)/2. In all cases studied, we regarded o
=0y, £;=€p, ky=kj, Ny =Ny, and Ny =N, ;.

In the simulation, the internal energy is obtained through
U=U;+U,, where U, is the internal energy averaged from
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TABLE III. Radial distribution function at contact, internal energy, and compressibility factor of hard-core

two-Yukawa fluid mixture from Monte Carlo simulations for o,/0,=0.5, £,/£,=0.5, N\ ;=\ |,=\; ,=1.8,
N\,1=8.0, and k;=k,=—12.0 (case 3).

T Xy P guloy) gn(a) g0 U/NkgT Z

4.0 0.5 0.3 0.104 0.337 0.206 0.094 1.617
0.5 0.160 0.434 0.281 0.236 2.340
0.7 0.261 0.570 0.399 0.477 3.447
0.9 0.441 0.758 0.578 0.849 5.058
1.1 0.765 1.029 0.849 1.379 7.336
1.3 1.326 1.407 1.260 2.088 10.486

6.0 0.25 0.5 0.264 0.530 0.395 0.122 1.579
0.7 0.337 0.609 0.470 0.198 1.925
0.9 0.433 0.703 0.564 0.295 2.357
1.1 0.564 0.814 0.679 0.415 2.892
13 0.739 0.952 0.827 0.562 3.552

6.0 0.5 0.3 0.245 0.509 0.375 0.089 1.558
0.5 0.348 0.631 0.486 0.204 2.173
0.7 0.516 0.788 0.645 0.383 3.078
0.9 0.780 1.005 0.871 0.644 4.375
1.1 1.204 1.298 1.196 1.003 6.201
1.3 1.876 1.688 1.660 1.474 8.748

6.0 0.75 0.3 0.287 0.567 0.425 0.128 1.930
0.5 0.475 0.756 0.614 0.353 3.187
0.7 0.830 1.048 0.918 0.757 5.310
0.9 1.505 1.506 1.426 1.398 8.767
1.1 2.785 2.236 2.275 2.323 14.344
13 3.873 6.777 3.229 3.474 21.127

8.0 0.5 0.3 0.371 0.628 0.505 0.080 1.522
0.5 0.509 0.758 0.637 0.175 2.080
0.7 0.715 0.928 0.815 0.317 2.882
0.9 1.029 1.153 1.065 0.518 4.024
1.1 1.503 1.456 1.408 0.789 5.626
1.3 2.226 1.857 1.896 1.139 7.883

the MC simulation with the cutoff radius of r., and U, is the
long-range correction of the internal energy derived from the 6pkBTE 2 f g ir )4mrd ()

.26
energy equation.

N N
U= 2 Z Uij(rij)

(o <rysr.), (2)
i=1 j=itl ens
2 2
—ZWpNz Exx Dljo'?], (3)

i=1 j=1

where ( )., represents the ensemble average, p is the total
number density of the system, and x; is the molar fraction of
component i. Equation (3) is obtained from energy equation
by assuming the radial distribution function g;(r)=1 when
r>r.. The coefficient D;; is expressed as

1 r.
)\k Jij O-ij

The compressibility factor Z of the binary HCTY mix-
ture is obtained based on the pressure equation,26

Dlj E 8k1/<)\
kl]

k=1

where kg is the Boltzmann constant. The integral in the right-
hand side can be obtained from the sum of the integrations in
the three intervals, i.e., r=0y;, 0;;<r=<r. and r>r. Thus
Eq. (5) can be written as

Z=1+2Z,+Z,+7, (6)
where
27Tp
szx]gl](o-l]) ij? (7)
i=1 j=1
Au; (r)
Zs_ 2 E r (a-i'<ri‘$rc)a
3NkBTt 1 j=i+] " or ril ens ro
(8)
27p
l= 2 Exlx Cl ) (9)
3kTis o o
with

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



014901-5 Mixed colloids J. Chem. Phys. 128, 014901 (2008)

TABLE IV. Effect of particle size on radial distribution function at contact, internal energy, and compressibility
factor of hard-core two-Yukawa fluid mixture from Monte Carlo simulations for x;=0.5, &,/&,=0.5, N\
=N12=N; 12=1.8, \,;=4.0, and k;=k,=1.0 (case 1).

T ol oy P’ gn(ay) ga(0) g0 U/NksT z

3.0 0.25 0.5 2.113 1.530 1.778 -0.549 0.970
0.7 2.270 1.661 1.894 -0.778 1.026
0.9 2.506 1.799 2.042 —-1.021 1.155
1.1 2.840 1.979 2217 —-1.281 1.395
1.3 3.322 2.194 2.450 —1.558 1.819

3.0 0.75 0.3 2.114 1.595 1.803 -0.501 1.062
0.5 2.355 1.830 2.044 -0.853 1.255
0.7 2.750 2.177 2418 -1.235 1.688
0.9 3.391 2.690 2.989 -1.656 2.570
1.1 4.423 3.470 3.877 -2.117 4.274
1.3 6.152 4.690 5.326 -2.617 7.586

TABLE V. Effect of particle size on radial distribution function at contact, internal energy, and compressibility
factor of hard-core two-Yukawa fluid mixture from Monte Carlo simulations for x;=0.5, &,/&,=0.5, N\
=Nj2=N\; 2=1.8, \,;=8.0, and k;=k,=—-6.0 (case 2).

T 0,/ 0y o’ guloy) g2(0) gn(o) U/NkgT z

3.0 0.25 0.5 0.336 0.551 0.437 0.001 1.672
0.7 0.460 0.634 0.524 0.051 2.196
0.9 0.649 0.738 0.638 0.148 2.954
1.1 0.932 0.866 0.785 0.305 4.020
1.3 1.364 1.028 0.984 0.534 5.497

3.0 0.75 0.3 0.300 0.629 0.466 -0.022 1.659
0.5 0.454 0.853 0.667 0.041 2.543
0.7 0.731 1.204 0.997 0.212 4.033
0.9 1.226 1.740 1.536 0.528 6.432
1.1 2.106 2.566 2413 1.021 10.208
1.3 3.736 3.923 3.922 1.723 16.300

TABLE VI. Effect of energy parameter on radial distribution function at contact, internal energy, and com-
pressibility factor of hard-core two-Yukawa fluid mixture from Monte Carlo simulations for x;=0.5, 0,/ 0,
=0.5, Nj ;=N 2=\ 1p=1.8, X\, 1=4.0, and k;=k,=1.0 (case 1).

T &rle, p' gnloy) g22(0) gi(o) U/NkyT z

3.0 0.25 0.3 2.055 1.285 1.540 -0.339 1.041
0.5 2.198 1.434 1.692 -0.571 1.138
0.7 2.425 1.607 1.896 -0.817 1.328
0.9 2.766 1.838 2.166 -1.079 1.668
1.1 3.263 2.127 2.538 -1.363 2.250
1.3 3.991 2.503 3.045 -1.670 3.227

3.0 0.75 0.3 2.019 1.764 1.891 -0.444 0.942
0.5 2.143 1.902 2.024 -0.745 0.966
0.7 2.345 2.090 2.201 -1.061 1.070
0.9 2.662 2.312 2.442 -1.398 1.308
1.1 3.144 2.615 2.783 -1.762 1.779
1.3 3.859 3.015 3.265 -2.153 2.636
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TABLE VII. Effect of energy parameter on radial distribution function at contact, internal energy, and com-
pressibility factor of hard-core two-Yukawa fluid mixture from Monte Carlo simulations for x;=0.5, 0,/ 0,
=0.5, Nj ;=N 2=N 1p=1.8, X\,;=8.0, and k;=k,=—6.0 (case 2).

T £/ p' gnloy) g2(0) gn(o) U/NkgT zZ
3.0 0.25 0.3 0.268 0.804 0.567 -0.017 1.422
0.5 0.367 0.954 0.705 0.007 1.908
0.7 0.522 1.152 0.898 0.076 2.648
0.9 0.769 1.408 1.170 0.207 3.744
1.1 1.165 1.740 1.542 0.416 5.333
1.3 1.797 2.186 2.062 0.717 7.606
3.0 0.75 0.3 0.273 0.370 0.318 -0.015 1.446
0.5 0.380 0.454 0.411 0.020 1.977
0.7 0.549 0.578 0.548 0.116 2.797
0.9 0.822 0.753 0.748 0.294 4.018
1.1 1.262 0.993 1.040 0.573 5.790
1.3 1.960 1.341 1.472 0.970 8.303
2 2 33 . Ma=18, A\ =40, andk =k =10 (Casel),
Cij:ESk,ij ;4‘)\ 0-+)\T exp _)\k,ij —1 .
=l o TRUT T Ni=18, Xy, =80, andk =k;=—60 (Case?2),
(10)
From Egs. (6)—(10), one can see that Z; can be calculated Ai=18, N1 =80, andk;=k=-12.0 (Case 3),
directly, and Z; can be averaged from the MC simulation. To
obtain Z,, we need the values of radial distribution function N1 =2.8647, N, =13.5485, andk =k,

at contact. In this work, they are extrapolated from the radial
distribution functions in the vicinity of contact.

In the NVT MC simulations, N=500 particles were
placed in a cubic box of length L and the standard Metropolis
algorithm with periodic boundary conditions were applied.
In each simulation, about 5 X 10* MC cycles (2.5X 107 con-
figurations) were used to equilibrate the system. After equili-
bration, internal energy, compressibility factor, and radial
distribution function were obtained using appropriate aver-
ages over the subsequent 9.5 X 10° MC cycles. In each simu-
lation, the value of cutoff radius was selected to 3.60=<r.
=<5.90, depending on the density of the system.

The MC simulations were carried out for the binary
HCTY mixture under various conditions. The studied param-
eters in the HCTY potential are designed as the following
cases:

=—1.4466 (Case 4).

In cases 1-3, we select \; ;=1.8 due to the fact that it is
frequently used to represent the dispersive interaction (with
Yukawa potential) between colloidal palrticles.8 In case 1,
there is no repulsive interaction outside the hard core. Cases
2 and 3 are examples for the interaction between real charged
protein molecules in a binary mixture, and case 4 represents
the Yukawa potential that mimics the behavior of the well-
known Lennard-Jones potential.

lll. ANALYTICAL THEORY

The integral equation theory with the FMSA has been
proposed to model attractive hard-core one-Yukawa and

TABLE VIII. Radial distribution function at contact, internal energy, and compressibility factor of hard-core
two-Yukawa fluid mixture from Monte Carlo simulations for £,/£,=0.5, 05/ 07=0.5, N| j=X\| ;=\ 1,=2.8647,
N, =13.5485, and k;=k,=-1.4466 (case 4).

T X P* guloy) g2(0,) gia(o) U/ NkgT z
0.563 0.5 0.3 0.453 0.755 0.630 -0.619 0.830
0.5 0.465 0.843 0.692 -0.997 0.815
0.7 0.501 0.954 0.777 -1.372 0910
0.9 0.588 1.113 0.913 -1.762 1.228
1.1 0.766 1.346 1.132 -2.155 1.981
1.3 1.096 1.682 1.471 -2.514 3.480
1.5 0.5 0.3 0.841 0.980 0.934 -0.200 1.180
0.5 0.958 1.101 1.058 -0.339 1.398
0.7 1.137 1.258 1.230 -0.482 1.754
0.9 1.394 1.474 1.462 -0.625 2.322
1.1 1.790 1.752 1.787 -0.764 3.238
1.3 2.386 2.125 2.237 -0.885 4.690
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FIG. 1. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations for o,/0,=0.5, &,/&,=0.5, x;=0.5,
Na=No=N\; =18, \,;=4.0, and k;=k,=1.0 (case 1). The symbols and
solid lines represent the results from MC simulations and theory,
respectively.

multi-Yukawa spheres.20 Here we systematically apply this
approach to mixture fluid and see how well it describes the
behavior of the binary HCTY mixtures.

A. Thermodynamic properties

According to the FMSA of Tang,10 analytical expression
for the Helmholtz free energy can be expressed as

AEINKyT = ag+ a, + a,, (11)

where AE is the total excess Helmholtz free energy of the
system, aj is the hard-core repulsion contribution, and a; and
a, are the perturbative terms. a, is obtained from the

Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL)
equation of state,”’
1l _88 3 3
a0=—[( Gh-88) 2’522 +§—§1nA A, (12)
& A &A 3

where &,=2,mp;07/6, n=0, 1, 2, and 3, A=1-&;. a; and a,
are expressed, respectively, by
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1.8

(@)
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Poud

FIG. 2. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulation with o,/0,=0.5, &,/¢,=0.5, x;=0.5,
Ni=Njo=N; =18, N,;=8.0, and k;=k,=—6.0 (case 2). The meaning of
the symbols is the same as in Fig. 1.

ay=-2mpBY 2 X xiXj€41i031Go if(Ng i) €k, (13)
K i

ar=-— WP,BE E 2 xi)c_jsk,ijo'ile,i_j()\k,ij)e)\k’ij, (14)
ki

where B=1/kgT, G ;(s) and G, ;(s) are, respectively, the
reference and the first-order perturbative radial distribution
functions in terms of Laplace transform,

e’ 0‘2 3§3> (T[‘( 3620'['0")
Go =—_u(1_ %, 360,
0i(s) Adet(s)|:s2 " A " s Tt 2A

+ ;T_Z;LE pme1(o) (0, — o) (0, — 0'].):| , (15)

Ko, BNy 1) BN, 1)
S+ )\y,lk

m n

Gl,ij(s) 22 ; % 2 2

-

e
XBmi(s)an(S) > (16)
2TPNXX;

where 'y:1,2, K%ij:zWBS%ijO'ij\f{;pj, and BU(S) is ex-
pressed by
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FIG. 3. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations with o,/0,=0.5, &,/&,=0.5, x;=0.5,
M=M=\ p=1.8, \,,=8.0, and k;=k,=—-12.0 (case 3). The meaning of
the symbols is the same as in Fig. 1.

— W.(s)
B.(s)=8,;+2mp,p,—L—"—, 17
ij(8) = 6+ 2m\p;p; A det(s) (17)

3 3&0,0;
Wii(s) = <Pz(0'i)<1 + %) + 901(01')(0'1']"" %)

¥ igol(oi)% @1 (0, (0 = ) (0 = )

+ i(f?% pm‘PZ(Um)(O.j - O-m)a (18)
with
l-s—e¢)ar
GDl(Ui):(Ss—ze)l, (19)
_ 2/y _ ,=8) 3
sz(o'i):(l S+SS/32 ‘ )U', (20)
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FIG. 4. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations for o,/0,=0.5, &,/&,=0.5, x;=0.5,
N=Njo=N p=2.8647, N, =13.5485, and k;=k,=-1.4466 (case 4). The
meaning of the symbols is the same as in Fig. 1.

2 3
det(s) = l - Xﬂ-p% xm()DZ((Tin)(l + %)

2m

- Pz xm@l(am)(o-m"'

352(7,271)
A

2A

T 2
- EP % g xm-xn(Pl(a-m)(Pl(o-n)(o-m - 0',,) .
(1)

In Eq. (18), §;; is Kronecker delta function.

The corresponding analytical expressions for the com-
pressibility factor and internal energy can be obtained from
the standard thermodynamic relationship,

Z = pld(AINkgT)/dplzr.n (22)
and
U/NkgT = — T[/(A/NkgT)/dT]y y- (23)

Thus we can obtain
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FIG. 5. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations for o,/0,=0.5, &,/&,=0.5, T"=3.0,
Na=No=N; p=1.8,\,;=4.0, and k;=k,=1.0 (case 1). The meaning of the
symbols is the same as in Fig. 1.

Z=Zp+p (day/dp )pn+p (day/dp )1y, (24)

where p* =p031 is the reduced density, and Z,, is the com-

pressibility factor of hard-sphere mixture, which is given

by27

(B-88
A’g

_1 . 366 N
A A%

Zhs (25)
The internal energy can be derived from Egs. (13), (14),
and (23). The result is given by

U/NkBT: a +2az. (26)

B. Structural properties

It is known that the MSA predicts good radial distribu-
tion functions at large distance, but it behaves worse at short
distance. A simplified exponential (SEXP) approximation
can be used to improve the accuracy for predicting radial
distribution functions. Besides its simplicity and high accu-
racy, the SEXP approximation for the radial distribution
function has strong theoretical basis.'® Its expression within
the FMSA approach is given by

J. Chem. Phys. 128, 014901 (2008)

35
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FIG. 6. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations for o,/0,=0.5, &,/&,=0.5, T°=3.0,
Ni=Njo=N; =18, X\,;=8.0, and k;=k,=-6.0 (case 2). The meaning of
the symbols is the same as in Fig. 1.

gij(r) = go,ij(”)eg‘*if(r), (27)

where g ;;(r) is the radial distribution function of the hard-
sphere fluid, and g, ;(r) is the perturbative one in the FMSA
approach. Their expression at contact can be obtained, re-
spectively, from the BMCSL equation of state”’ and the
FMSA applroach.10

1 o036 (O’-O’->2 f%
(o) =— 4 —L == 4| L == 28
go,lj(o-lj) A U'ij 2A2 O'ij 2A3 ( )
EEI:%K kBN 1) BNy 1)
g1i(0y) = z — . (29)

2mo\pip;

IV. RESULTS AND DISCUSSION

The NVT Monte Carlo simulation results for the radial
distribution function at contact g;;(0;;), the internal energy
U/NkgT, and the compressibility factor Z for the binary
HCTY mixture are listed in Tables I-VIII at various tempera-
tures T =kpT/e;, reduced densities p , molar fractions x,
hard-core diameter ratios o,/ oy, and energy parameter ratios
&,/ €. The comparisons of the theoretically calculated inter-
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FIG. 7. (Color online) Comparison of (a) internal energy and (b) compress-
ibility factor of binary HCTY mixtures as a function of density from the
FMSA and Monte Carlo simulations for o,/0,=0.5, &,/&,=0.5, T"=6.0,
Na=Njo=N\; p=1.8, N, =80, and k;=k,=—-12.0 (case 3). The meaning of
the symbols is the same as in Fig. 1.

nal energy and compressibility factor with the MC simula-
tion data for the binary HCTY mixtures are shown in Figs.
1-8.

Table I presents NVT MC results in case 1 for o,/ 0,
=0.5 and &,/&,=0.5. Figure 1 shows a comparison between
theory and MC simulation results of internal energy and
compressibility factor in case 1 as a function of density at
reduced temperatures T*=1.5, 2.0, and 3.0. Theoretical pre-
dictions are in very good agreement with MC simulation
results at 7" =2.0 and 3.0. The predicted internal energy is
slightly higher than that of MC simulations at low tempera-
ture (T*:I.S). Since in case 1 the interaction outside the
hard core is attractive, the internal energy is negative at en-
tire range of temperature and density. The internal energy
becomes more negative as reduced temperature is decreased.
In the meantime, the compressibility factor decreases as tem-
perature is decreased. This finding is in accordance with that
for pure Yukawa fluid in the literature.'®

Figures 2-4 show comparisons between theory and
simulation results of internal energy and compressibility fac-
tor for 0,/ 0=0.5, &,/&,;=0.5, and x;=0.5 in cases 2, 3, and
4, respectively. In these cases, the total interaction is repul-
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FIG. 8. (Color online) Effect of size ratio on (a) internal energy and (b)
compressibility factor of binary HCTY mixtures predicted from the FMSA
and Monte Carlo simulations for &,/&,=0.5, x;=0.5, T°=3.0, Ni=No
=N\, =18, \,;=4.0, and k;=k,=1.0 (case 1). The meaning of the symbols
is the same as in Fig. 1.

sive near the contact point but becomes attractive at enough
long distance between particles. From Figs. 2 and 3 one can
see that in most temperatures and densities, the internal en-
ergy is positive, and the compressibility factor increases as
temperature is decreased. In case 4, the internal energy and
compressibility factor vary similar to case 1 (see Fig. 1) be-
cause in both cases, the dominant interaction outside the hard
core is attractive force. The theoretical predictions of internal
energy and compressibility factor are in good agreement with
the MC simulation results except for lower temperatures,
where the theory slightly overestimates the internal energy.
Also in Figs. 1 and 4, the fluid-fluid equilibria can be found
at some low temperatures. However, there is no fluid-fluid
equilibrium in cases 2 and 3 due to the fact that the repulsive
interaction between particles is dominant at the distance
larger than the hard-core diameter oy;.

Figures 5-7 presents comparisons between theory and
MC simulation results of internal energy and compressibility
factor of binary HCTY mixtures as a function of molar frac-
tion and density for 0,/0,=0.5 and &,/&,=0.5 in cases 1-3,
respectively. From Figs. 5-7 one can find that at tempera-
tures studied (7" =3.0), the compressibility factor is domi-
nated by the particle size (hard-core diameter), while the

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



014901-11 Mixed colloids

20F

o o /0'I =0.25
15k o o /0'I =0.50
A o, /0'l =0.75

U/ Nk,T

O 1 1 1 1 1 1 1
00 02 04 06 08 1.0 12 14

p*

FIG. 9. (Color online) Effect of size ratio on (a) internal energy and (b)
compressibility factor of binary HCTY mixtures predicted from the FMSA
and Monte Carlo simulations for &,/&,=0.5, x;=0.5, T"=3.0, Ni=No
=N\ 12=1.8, \,;=8.0, and k;=k,=—-6.0 (case 2). The meaning of the sym-
bols is the same as in Fig. 1.

internal energy is dominated by the energy parameter. Be-
cause the size of component 1 is larger than component 2,
the compressibility factor of the binary HCTY mixture in-
creases as the molar fraction of component 1 is increased.
The absolute value of the internal energy also increases as
the molar fraction of component 1 is increased due to the
energy parameter €;>>g,. As can be seen from Figs. 5-7,
theoretical predictions are in very good agreement with MC
simulation data.

The effects of size ratio on internal energy and com-
pressibility factor of binary HCTY mixtures are listed in
Tables IV and V. Figures 8 and 9 show comparisons between
theory and MC simulation results of internal energy and
compressibility factor of binary HCTY mixtures as a func-
tion of size ratio and density for &,/¢;=0.5, x;=0.5, and
T°=3.0 in cases 1 and 2, respectively. It is evident that the-
oretical predictions are in excellent agreement with MC
simulation results for all values of size ratios. Figures 8 and
9 demonstrate that the absolute values of both internal en-
ergy and compressibility factor increase with the increase of
the particle size.

The effects of energy parameter on internal energy and
compressibility factor for binary HCTY mixture in cases 1

J. Chem. Phys. 128, 014901 (2008)

(a)
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FIG. 10. (Color online) Effect of energy parameter on (a) internal energy
and (b) compressibility factor of binary HCTY mixtures predicted from the
FMSA and Monte Carlo simulations for oy,/0q;=0.5, x,=0.5, T =3.0,
N=No=N; =18, N,;=4.0, and k;=k,=1.0 (case 1). The meaning of the
symbols is the same as in Fig. 1.

and 2 are listed in Tables VI and VII, respectively. From the
tables, we found that as the value of energy parameter is
increased, the absolute value of internal energy increases.
When the total internal energy of the system is positive, the
compressibility factor becomes larger with the increase of
temperature. A contrary variation tendency of compressibil-
ity factor is found when the total internal energy is negative.
Figure 10 shows a comparison of the internal energy and
compressibility factor predicted from the FMSA approach
with that from MC simulations for o,/0,=0.5, x;=0.5, and
T=3.0 in case 1. This figure shows the energy ratio varia-
tion. Again, the analytical theory is in excellent agreement
with MC simulation results.

The comparisons of radial distribution functions at con-
tact from the SEXP approximation and MC simulations for
binary HCTY mixtures are plotted in Figs. 11 and 12. Figure
11 presents composition variation for o,/0,;=0.5, &,/¢;
=0.5, T"'=3.0, Na=No=N12=1.8, N\, ;=4.0, and k =k,
=1.0 (case 1), while Fig. 12 shows energy ratio variation for
o,/ 01=0.5, x;=0.5, T°=3.0, N=No=N =18, \,,=8.0,
and k;=k,=-6.0 (case 2). For all the mixtures, the SEXP
approach based on the FMSA gives very good results for the
radial distribution functions at contact. Figure 13 shows ra-
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FIG. 11. (Color online) Comparison of radial distribution functions at con-
tact from the SEXP approximation and Monte Carlo simulations for binary
HCTY mixture at 7" =3.0, 0/ 07=0.5, £,/£,=0.50, | ;=\ ,=\; ;= 1.8,
N2 1=4.0, and k;=k,=1.0 (case 1): (a) g11(a), (b) g12(03), and (¢) gox(a).
The symbols and solid lines represent the results from Monte Carlo simula-
tions and SEXP approximation, respectively.

dial distribution functions for the binary HCTY mixture as a
function of distance at T =6.0, p*=1.3, 0,/0,=0.5, and
g,/e1=0.5 in case 2. It can be seen from Figs. 11 and 12 that
the increase of density results in more frequent contact due to
reducing the inert-particle distance. This behavior is the
same as pure fluid interacting with a multi- Yukawa potential.

J. Chem. Phys. 128, 014901 (2008)
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FIG. 12. (Color online) Comparison of radial distribution functions at con-
tact from the SEXP approximation and Monte Carlo simulations for binary
HCTY mixture at 7" =3.0, x1=0.50, 0/01=0.5, Nj ;=N 5=\ p=1.8, Ny
=8.0, and k;=k,=-6.0 (case 2). The meaning of the symbols is the same as
in Fig. 11.

V. CONLUSIONS

Monte Carlo simulation results of internal energy, com-
pressibility factor, and radial distribution function are pre-
sented for binary mixed colloids represented by the binary
hard-core two-Yukawa mixture under various conditions in
the fluid phase. The accuracy of the analytical results from
the FMSA for the thermodynamic properties of the binary
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FIG. 13. (Color online) Radial distribution functions of binary HCTY mix-
tures from the Monte Carlo simulations at T~ =6.0, p*=1.3, o,/ 0,=0.5,
£,/81=0.5, N; 1=N; ;=\ ,=1.8, N\, ;=8.0, and k;=k,=-6.0 (case 2).

HCTY model fluid has been assessed against MC simulation
data. The general agreement of the predictions from the
FMSA with the simulation results is quite satisfactory. The
effects of temperature, density, composition, size and energy
ratios on internal energy, and compressibility factor have
been investigated extensively for the binary HCTY model
fluid. The FMSA predicts these effects very well and is ca-
pable of describing the fluid-fluid phase transition of the bi-
nary HCTY fluids at low temperature. Furthermore, we
found that for the binary HCTY mixtures, the SEXP approxi-
mation based on the FMSA is quite accurate in prediction of
the radial distribution functions at contact.

It is believed that the binary HCTY fluid model pos-
sesses a wide range of application due to its ease of use and
its ability to capture crucial features of real fluids.”' The
FMSA described here is most promising for describing the
thermodynamic and structural properties of mixed colloids,
mixed globular proteins in electrolyte solution, dusty plas-
mas, etc.
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