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A very simple and accurate approach is proposed to predict the high-order virial coefficients of

hard spheres and hard disks. In the approach, the nth virial coefficient Bn is expressed as the

sum of nD�1 and a remainder, where D is the spatial dimension of the system. When n Z 3, the

remainders of the virials can be accurately expressed with Padé-type functions of n. The

maximum deviations of predicted B5–B10 for the two systems are only 0.0209%–0.0044% and

0.0390%–0.0525%, respectively, which are much better than the numerous existing approaches.

The virial equation based on the predicted virials diverges when packing fraction Z = 1. With

the predicted virials, the compressibility factors of hard sphere system can be predicted very

accurately in the whole stable fluid region, and those in the metastable fluid region can also be

well predicted up to Z = 0.545. The compressibility factors of hard disk fluid can be predicted

very accurately up to Z = 0.63. The simulated B7 and B10 for hard spheres are found to be

inconsistent with the other known virials and therefore they are modified as 53.2467 and 105.042,

respectively.

1. Introduction

Despite their simple intermolecular potentials, the hard

sphere and hard disk systems exhibit a surprisingly rich

structural and thermodynamic features of real systems.1

For example, the hard sphere system can be present as stable

fluid, metastable fluid,2–4 solids (body-center or face-center

cubic crystals),3,5 glassy state,6 and random close-packed

state.3,7,8 Similarly, the hard disk system also has several

states, such as fluid, hexatic phase,9 solid phase,10,11 glassy

state,12 random jammed packing7 or random close packing.13

On the other hand, it is well accepted that the structural

features of real systems are determined primarily by the repulsive

intermolecular potential.14 For these reasons, hard sphere and

hard disk systems are commonly used as reference systems in

the statistical mechanics15 or macroscopic thermodynamics of

more complicated model systems16 and real systems.17

So far, many equations of state (EOS) have been proposed

for hard spheres2,18–30 and hard disks.18,19,22,24,26,31–37 Among

the numerous EOS, virial equation is the unique EOS that is

exact in statistical mechanics (free of any ad hoc assumption),

and can be systematically improved by adding higher order

terms.30,38,39 The virial equation is expressed as

Z ¼ PV

RT
¼
X1
n¼1

BnZn�1

¼ 1þ B2Zþ B3Z2 þ B4Z3 þ B5Z4 þ � � � � � � ð1Þ

where Z, P, V, T, R, Z and Bn are the compressibility factor,

pressure, molar volume, temperature, Avogadro constant,

packing fraction and the nth virial coefficient reduced by the

power of hard-core volume, respectively. For the hard sphere

and hard disk systems, the first four virial coefficients (B1–B4)

can be derived analytically,40 i.e.

Hard sphere: B1 = 1, B2 = 4, B3 = 10, B4 = 18.36476838. . .

Hard disk: B1 = 1, B2 = 2, B3 = 3.128017947. . ., B4 =

4.257854656. . .

The other virial coefficients need to be evaluated numerically,

where the fifth to tenth virials have been determined using

Monte Carlo simulations (Table 1).19,31,38,41–48 Details on the

research status of these virials can be found in a recent review

made by Maters.49 If only these virials are used to predict the

compressibility factors of pure fluid in the isotropic region, i.e.,

outside the fluid–solid transition region, the maximum deviation

from the simulated results is over 2% for hard sphere system,

and over 4% for hard disk system, which is inadequate for

accurate theoretical or practical applications. Up to now,

many approaches have been proposed to estimate the higher-

order virials of hard spheres2,19,22–26,28,30,31,35,39,42,44,47,48,50

and hard disks.19,22,26,34–37,42,44,51,52 Most of these approaches

are capable of accurate or reasonable prediction of the closest

one or two higher-order virials that are not used in para-

meterization. Generally speaking, the accuracy or reliability

of the predicted virials decreases rapidly as order increases.

The commonly used Padé approximants often overestimate

virials.30 The Levin approximants are usually more accurate

and reliable than Padé approximants, but they are not as

convenient as Padé approximants. If we hope to extract high-

order virials (e.g. n 4 10) from simulated compressibility

factors, it must be done with caution, because high-order

virials are very sensitive to the deviations of compressibility

factors. Kolafa et al.28 and Kolafa and Rottner36 offered good

examples for this approach. In addition, there are also other

problems in the prediction of high-order virials. One is the
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singularity of the fluid–solid transition, which should

accompany a local abrupt change in Bn in some range of

order, and the second is the inconsistency among the known

values of the first ten virials.

In order to obtain reliable high-order virials that are

adequate for the construction of a highly accurate EOS for

hard spheres and hard disks, it is very necessary to find

better approaches. We found that there is a well-behaved

relationship between the known virials and their orders, which

can be used to develop very simple and accurate approaches

for the prediction of high-order virials. We also correct the

inconsistency among the ten known virials, and briefly

discussed the limiting behavior of predicted virial coefficients.

2. Prediction of the high-order virial coefficients

2.1 General consideration

For hard spheres and hard disks, there is a well-behaved

relationship between the known virials and their orders. We

found that the known virials (B1–B10) can be roughly approxi-

mated by nD�1, and each remainder is much smaller than nD�1.

For this reason, any nth virial coefficient can be expressed as

Bn = nD�1 + DBn (2)

where DBn is the remainder of nD�1 approximation. As can be

seen from Fig. 1, DB1 = DB2 = 0, and the others behave as a

function of n. For hard sphere system, DBn is a monotonically

increasing function of n, while for hard disk system it

has a maximum value at n = 6. This is very different from

Bn � n curve.

Apparently, the simulated value of B10 for hard spheres is

inconsistent with the overall trend of B3–B9. Furthermore, the

value of B7 for hard spheres is also slightly inconsistent with

other virials. Since DBn { nD�1, the inconsistency above is

greatly weakened in Bn � n diagram. This may be the principal

reason why there is no report on this inconsistency. We found

that the deviations due to the inconsistency are obviously

larger than the uncertainties given by the original authors.47,48

One may think that the positive deviations of B7 and B10 from

the overall trend of other virials may arise from the singularity

of hard sphere system (which has an unusual contribution

to Z and Bn). However, if the singularity has perceptible

contribution to B7 and B10, it should also have a comparable

contribution to B8, B9 and other virials, because the

abnormality of B7 and B10 is too weak to explain the singularity.

On the other hand, there is excellent agreement between

B3–B6, B8 and B9, which is sufficient to rule out the singular

contribution. This is also supported by the ten known virials

for hard disks (which do not exhibit any singularity). The

following points also support the conclusions mentioned

above. (1) The uncertainty in B10 is very likely underestimated.

According to Labik et al.,47 the expected error in B10 estimated

by extrapolating the latest (and also the most accurate) values

of B5–B9 is about �1, which is 2.56 times the uncertainty

(�0.39) reported by Clisby and McCoy.46,48 In the estimated

uncertainty range, the simulated value of B10 agrees well with

other virials. (2) The uncertainty in B7 has been under-

estimated many times in the past fifty years. This is evident

in Table 2, where the lower limits of subsequently simulated

values of B7 often fall outside the uncertainty ranges of

the older results. Therefore, it is not unexpected that the

uncertainty in the latest B7 was underestimated. Nevertheless,

it should also be noted that the deviation of B7 due to

the inconsistency is still in the uncertainty ranges of some

simulated results, such as those of Janse van Rensburg42

(53.54 � 0.29) and Kratky45 (53.7 � 0.8) (Table 2). The points

above suggest that the inconsistency should come from the

uncertainties of simulations, and thus should be corrected in a

Table 1 Simulated values and uncertainties of B5–B10. The uncertainties given in brackets are the last significant number(s)

n

Hard sphere Hard disk

Labik et al.47 Clisby and McCoy46,48 Labik et al.47 Clisby and McCoy46,48

5 28.22445(10) 28.2245(3) 5.33689664(64) 5.33689664(16)
6 39.81550(36) 39.81515(93) 6.363026(11) 6.36296(13)
7 53.3413(16) 53.34442(37) 7.352080(28) 7.35186(28)
8 68.540(10) 68.538(18) 8.318668(62) 8.31910(44)
9 85.80(8) 85.813(85) 9.27236(29) 9.27214(90)
10 105.78(39) 10.2163(41)

Fig. 1 The remainder Bn � nD�1 as a function of n.
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proper way. The details of the correction will be given in next

section.

On the other hand, the singularity in the fluid–solid transition

must have a perceptible contribution to some virials, although

we do not know its exact range of order or its exact magnitude

of the singular contribution at the present time. For convenience,

we do not consider the singular contribution to Bn in this

work. Thus we can assume that the non-zero values of DBn

behave regularly as a function of order. This assumption

proves to be valid if we are only interested in the high-order

virials that are necessary and sufficient to construct a highly

accurate truncated virial equation.

We found that the known DBn values of hard spheres and

hard disks can be well formulated with Padé-type functions

of order:

DBn ¼ ½L=M�B ¼ DB3

1þ
PL
l¼1

blðn� 3Þl

1þ
PM
m¼1

amðn� 3Þm
ðn � 3Þ ð3Þ

where [L/M]B denotes the approximant for Bn, which is

completely different from the commonly used approximants

for compressibility factor. For hard sphere system, DB3 = 1,

so DB3 can be omitted from the equation. In principle, an

approximant like eqn (3) can be parameterized by L + M

virials (n Z 4). This approach works very well for hard sphere

system, but similar accuracy cannot be obtained for hard disk

system. This is because the hard disk DBn is a non-monotonic

function of n, making the fitting more difficult. A better solution

to this problem is the least-square fitting constrained by all the

known virials. Before doing so, we noticed that B3 and B4 are

derived from analytical expressions, so we force the approxi-

mant of interest to exactly reproduce DB3 and DB4, and then

determine the other L + M � 1 parameters with B5–B10.

2.2 Prediction of virial coefficients

Since the uncertainties of virials simulated by Labik et al.47 are

obviously smaller than those of Clisby and McCoy,48 we

use the results of Labik et al.47 to constrain the three

approximants, but the value of B7 for hard spheres used to

parameterize [2/2]B, [2/3]B, [3/2]B and [3/3]B takes the result

refined from [2/1]B and [2/1]B. The details of the refinement are

presented in next section. The parameters are given in

Table 3–5.

As can be seen from Table 6 and 7, the known B5–B10

are reproduced very accurately. The maximum deviations are

only 0.0390%–0.0525% and 0.0209%–0.0044%, respectively

(Table 8). For hard sphere system, the deviations of all

predicted values of B6, B8 and B9 are within (or close to) the

uncertainties of the simulated results. The predicted B7 and

B10 are also in excellent agreement with the overall trend of

other known virials. This is unusual considering the para-

meterization of [1/1]B, [1/2]B or [2/1]B for hard spheres only use

B4–B5 or B4–B6.

The above approaches are compared in Fig. 2 with the

existing approaches for hard spheres2,19,22–26,28,31,35,39,42,44,47,48,50

and hard disks.19,22,26,34–37,42,44,51,52 Many of the previous

approaches show large deviations, only a few give accurate

or reasonable results, such as those of Baram and Luban,22

Erpenbeck and Wood,23 Janse van Rensburg,42 Speedy2 and

Kolafa et al.28 for the hard sphere system, and those of

Kratky,34,44 Baram and Luban,22 Janse van Rensburg,42 Levin

approximant36 and Kolafa and Rottner37 for the hard disk

system.

2.3 Modification of B7 and B10 for hard spheres

In order to predict B7 and higher-order virials for hard sphere

system, only B3–B5 or B3–B6 can be used to constrain the

approximants. It is found that the [1/1]B, [1/2]B and [2/1]B type

approximants can give accurate prediction of B7–B10. The

values of B7 predicted by the three approximants are

53.2471596, 53.2467021 and 53.2467020, respectively. Since

[1/2]B and [2/1]B are constrained by more virials than [1/1]B,

their results should be theoretically more reliable. On the other

hand, the uncertainty of predicted B7 cannot be better than

those of B5 and B6 used in the parameterization (�0.00010
and �0.00036), and thus we take 53.2467 as the best estimate

of B7. This modified B7 agrees with the simulated value of

Janse van Rensburg42 (53.54 � 0.29) and the result of Kratky45

obtained from finiteness correction (53.7 � 0.8) within the

uncertainties. It is very interesting that every new value of B7 is

always lower than the previous ones, as can be seen in Table 2.

Our modification is consistent with this decreasing trend.

Recently, Kolafa et al.28 obtained five values of B7 from

highly accurate EOS (53.08, 53.11, 53.33, 53.27, and 53.39).

The average of the five values is 53.236, which is very close to

our modified value 53.2467. The doubly constrained Padé

approximants of Speedy2 also support our modification.

He allowed the simulated B6–B8 to vary within �1.5Ek

(where Ek is the uncertainty of Bk) and then optimized the

Padé-type EOS in the fluid region up to Z/Zcp = 0.50 (Zcp is the
closest packing fraction). The Padé approximants obtained

in this way should be much more reliable than those

without considering the uncertainties of known virials

and/or the constraints of highly accurate compressibility

factors. The optimized B7–B10 are 53.13, 68.57, 86.5 � 0.7

Table 2 Simulated values of B7 for hard sphere system

B7 Lower limit Upper limit Reference Year

56.5(1.6) 54.9 58.1 Ree and Hoover31 1967
56.1(2.5) 53.6 58.6 Kratky44 1977
53.7(8) 52.9 54.5 Kratky45a 1985
53.70(33) 53.37 54.03 Janse van Rensburg41 1993
53.54(29) 53.25 53.83 Janse van Rensburg42 1993
53.436(90) 53.346 53.526 Vlasov et al.38 2002
53.3444(37) 53.3407 53.3481 Clisby and McCoy46 2005
53.3413(16) 53.3397 53.3429 Labik et al.47 2005

a Corrected from the dependence of simulated result on the particle

number of system

Table 3 Padé parameters for hard sphere system

[L/M]B [1/1]B [1/2]B [2/1]B

a1 0.2937638 � 10+0 0.2935558 � 10+0 0.2934069 � 10+0

a2 0.4378624 � 10�4

b1 0.2059452 � 10+1 0.2059063 � 10+1 0.2058915 � 10+1

b2 �0.3068293 � 10�3

DBN 7.010571 0 �N
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and 106.7 � 1.0, respectively. These values agree very well

with the latest simulated results, where B7 (53.13) is slightly

smaller than our modified value. Besides, the modified B7

also agrees with the predicted value of Levin approximation

(54.1 � 1.6).22

The value of B10 can be refined on the basis of the

known B3–B9, where B7 takes the refined value. Five more

approximants are used here. Their parameters are listed in

Table 4. Now, there are totally eight Padé approximants for

the hard sphere system.

As can be seen in Table 6, the B10 values predicted from the

eight approximants agree very well with each other, where

the maximum difference in B10 is less than 0.016. Considering

the simulated uncertainties of B5–B9 and the excellent

consistency between our approximants, B10 can be taken as

105.042. This value is very close to the result (105) predicted

from the highly accurate EOS of Erpenbeck and Wood.23

Recently, Kolafa et al.28 optimized five values of B10 from

accurate EOS (108, 108, 106, 106, 103), whose statistical

expectation is 106 � 2.0.47 This result agrees well our modified

value. According to the Padé approximant constrained by the

latest virials,47 B10 = 106.5. The Padé approximants of

Speedy2 constrained by both known virials and simulated

compressibility factors also predict a very close result

(106.7 � 1.0). These results are not unexpected considering

Padé approximants almost always overestimate high-order

virials not used in parameterization.

Table 4 Padé parameters for hard sphere system

[L/M]B [2/2]B [2/3]B [3/2]B [3/3]B

a1 0.2890695 � 10+0 0.9356564 � 10�1 0.9341709 � 10�1 �0.6817809 � 10�1

a2 �0.1275538 � 10�2 �0.5866498 � 10�1 �0.5867900 � 10�1 �0.7393487 � 10�1

a3 �0.8716818 � 10�5 0.9482139 � 10�2

b1 0.2054580 � 10+1 0.1859074 � 10+1 0.1858925 � 10+1 0.1697400 � 10+1

b2 �0.9245081 � 10�2 �0.4117940 � 10+0 �0.4120705 � 10+0 �0.7127892 � 10+0

b3 0.6109191 � 10�4 0.6651676 � 10�1

DBN 7.247986 0 N 7.014953

Table 5 Padé parameters for hard disk system

[L/M]B [2/2]B [3/2]B [4/2]B [4/3]B

a1 0.1618191 � 10�1 0.2328215 � 10+0 �0.6217322 � 10�1 �0.4557538 � 10�2

a2 0.2496862 � 10�1 0.9204850 � 10�1 0.5663712 � 10�1 0.5024220 � 10�1

a3 �0.1001683 � 10�1

b1 0.1209296 � 10+1 0.1320411 � 10+1 0.1092781 � 10+1 0.1113382 � 10+1

b2 �0.1122036 � 10+0 0.3999558 � 10+0 �0.1136275 � 10+0 0.2963938 � 10�1

b3 �0.5180408 � 10�1 0.2664155 � 10�1 �0.6148428 � 10�1

b4 �0.2738986 � 10�2 0.4511989 � 10�2

DBN �4.49378546 �N �N N

Table 6 Predicted B5–B18 for hard sphere system. Bold values are the known virials (simulated or refined)

n [1/1]B [1/2]B [2/1]B [2/2]B [2/3]B [3/2]B [3/3]B

5 28.22445 28.22445 28.22445 28.22445 28.22445 28.22445 28.22445

6 39.81565 39.81550 39.81550 39.81550 39.81550 39.81550 39.81550

7 53.24716 53.24670 53.24670 53.24670 53.24670 53.24670 53.24670

8 68.57598 68.57509 68.57509 68.57508 68.54000 68.54000 68.54000

9 85.83486 85.83345 85.83344 85.83343 85.83346 85.83346 85.80000

10 105.04398 105.04196 105.04196 105.04192 105.04197 105.04197 105.05767
11 126.21643 126.21373 126.21373 126.21367 126.21375 126.21375 126.22382
12 149.36107 149.35765 149.35765 149.35755 149.35767 149.35767 149.36685
13 174.48413 174.47994 174.47994 174.47981 174.47997 174.47997 174.48922
14 201.5901 201.58512 201.58511 201.58493 201.58515 201.58514 201.59482
15 230.68232 230.67651 230.6765 230.67626 230.67654 230.67653 230.68682
16 261.76329 261.75663 261.75662 261.75631 261.75667 261.75666 261.76765
17 294.83495 294.82743 294.82741 294.82703 294.82747 294.82745 294.83923
18 329.89883 329.89042 329.89040 329.88993 329.89046 329.89045 329.90304

Table 7 Predicted B5–B18 for hard disk system. Bold values are
known virials

n [2/2]B [3/2]B [4/2]B [4/3]B

5 5.3357817 5.3369121 5.3368695 5.3368966

6 6.3637709 6.3628478 6.3631096 6.3630260

7 7.3533877 7.3522113 7.3519594 7.3520800

8 8.3184366 8.3189594 8.3187611 8.3186680

9 9.2704366 9.2719487 9.2723221 9.2723600

10 10.2173373 10.2164417 10.2163064 10.2163000
11 11.1639666 11.1555572 11.1517235 11.1610862
12 12.1129488 12.0911779 12.0784803 12.1012156
13 13.0655227 13.0244698 12.9961172 13.0401543
14 14.0221215 13.9561740 13.9041107 13.9785115
15 14.9827401 14.8867743 14.8019827 14.9166391
16 15.9471535 15.8165932 15.6893295 15.8547401
17 16.9150418 16.7458510 16.5658217 16.7929306
18 17.8860571 17.6747007 17.4311937 17.7312741
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2.4 The reliability of extrapolated virial coefficients

The predicted values of Bn (n r 100) are presented in Fig. 3.

The high-order virials for hard sphere system predicted

from the eight approximants are in excellent agreement with

each other. The difference in B100 is less than 0.161. The above

results strongly suggest that the approximants for hard sphere

system can be safely extrapolated far beyond the order

range of parameterization. Because of the lack of accurate

high-order virials (n 4 10), it is impossible to clearly deter-

mine the applicable range of order for each approximant.

Nevertheless, the latest values of B11–B15 (130 � 2, 150 � 5,

175 � 7, 205 � 10, 225 � 25) estimated by Malijevsky and

Kolafa50 from optimized differential approximants can serve

as a preliminary test, where the uncertainties were estimated

from the known virials and simulated compressibility factors.

The predicted values of B11–B15 in Table 6 are mostly within

the uncertainty ranges. The only exception is B11, which is

slightly smaller than the lower limit of the estimated value.

This is not unexpected, because the certainty estimation of

Malijevsky and Kolafa50 used the simulated results of Clisby

and McCoy,46,48 where the uncertainty in B10 was notably

underestimated.47

In addition to the above results, the following facts are very

useful for estimating the possible range of order:

(1) The predominant contribution of order to Bn can be well

described by nD�1.

Table 8 Deviations (%) of predicted virial coefficients

N 5 6 7 8 9 10

Hard sphere [1/1]B
a 0.0004 0.0009 0.0525 0.0406 b

[1/2]B, [2/1]B
a a b 0.0512 0.0390 b

[2/2]B
a a b 0.0512 0.0390 b

[2/3]B, [3/2]B
a a b 0.0390 b

Hard disk [2/2]B �0.0209 0.0117 0.0178 �0.0028 �0.0207 0.0102
[3/2]B 0.0003 �0.0028 0.0018 0.0035 �0.0044 0.0014
[4/2]B �0.0005 0.0013 �0.0016 0.0011 �0.0004 0.0001

a The corresponding virial coefficient is used in the parameterization of Padé approximant, so it is reproduced exactly. b The deviation is not

calculated, because the value of Bn has been modified.

Fig. 2 Comparison of the remainders from different approaches with

the computer simulation data. Solid and opened symbols denote the

simulated (or analytical) values and predicted values, respectively. The

estimated values are only given for n Z 7. The PY results for hard

disks are weighted average of the PY solutions for compressibility and

pressure approximations,52 where the compressibility result takes a

weight of 0.74384 used by Kratky.34

Fig. 3 Predicted Bn � nD�1 (n r 100) as a function of order n.
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(2) As n increases, the ratio DBn/Bn decreases very rapidly,

e.g., DB25/B25 o1%, DB50/B50 o0.27%.

(3) The simulated values of B6–B10 can be reproduced very

accurately by the simple approximants [1/1]B, [1/2]B and [2/1]B,

although their parameterization only uses B3–B5 or B3–B6.

(4) The predicted high-order virials from the eight approxi-

mants exhibit excellent consistency up to very high order

(n = 100). Combined with the excellent performance of [1/1]B,

[1/2]B and [2/1]B in the prediction of B7–B10, this consistency can

be regarded as an indication thatDBn can be accurately expressed

by Padé-type functions of up to very high order.

With the facts above, a conservative estimate of the

applicable order of the above approaches should be not lower

than n = 20. Such an upper limit of order is already much

higher than those of the existing approaches, and also enough

for constructing a highly accurate EOS.

Different from the approximants for hard spheres, good

agreement between the four approximants for hard disks only

exists up to B15–B20. At higher orders, the approximants differ

obviously from each other. So far, no reliable high-order

virials can be used to determine the overall trend of hard disk

virials at n4 10. The best high-order virials may be the results

for B11–B16 obtained by Kolafa and Rottner37 from accurate

EOS, whose uncertainties are 0.010, 0.03, 0.06, 0.08, 0.21 and

0.4, respectively. The large uncertainties of B15 and B16 should

closely relate to the obvious inconsistency between B15–B16

and B11–B14 (Fig. 2). This is not unexpected, because higher

order virials are more sensitive to the deviations of EOS

than the lower order virials. Besides, the good performance

of the EOS37 in the fluid–solid transition region indicates that

the fitted values of B15 and B16 are likely to be affected by the

singularity in the phase transition region (which has a negative

contribution to fitted Bn). Nevertheless, it is interesting that

the predicted B11–B16 from [2/2]B are all in the uncertainty

ranges of B11–B16 reported by Kolafa and Rottner.37 The

predicted B11–B16 from [4/3]B are mostly in the uncertainty

ranges, where only B11 and B12 are exceptional, but they are

only slightly (0.001) smaller than the lower limits of B11 and

B12 obtained by Kolafa and Rottner.37 According to the

results in Fig. 2, [4/2]B should be the worst of the four

approximants. If no singularity occurs before n = 20, the

other three approximants should be valid up to n = 15 or

higher order, and one or two of them (such as [2/2]B) should be

valid up to much higher order.

3. The limiting behavior of predicted virial coefficients

The parameters in Table 3–5 can be used to analyze the

limiting behaviors of the approximants. As n tends to infinite,

the approximants show three kinds of limiting behavior:

if L 4 M, the approximant will be divergent; if L o M, it

will converge to zero; and if L = M, it will converge to a

constant. It is interesting that the limits of the three symmetrical

approximants ([1/1]B, [2/2]B and [3/3]B) for the hard sphere

system are only slightly different. As expected, very close

results for DBn can be obtained from the three symmetrical

approximants in the full range of order. The [1/2]B and [2/3]B
(or [2/1]B and [3/2]B) approximants for hard sphere system also

have very close results.

Despite the great difference in the limiting behavior of DBn,

all approximants for hard spheres and hard disks have the

same limiting behavior in Fig. 4 and 5:

lim
n!1

Bn
V0

Vcp

� �n�1
¼ lim

n!1
BnZn�1cp ¼ 0 ð4Þ

lim
n!1

Bn

Bn�1
¼ 1 ð5Þ

where V0 is the molar volume of hard sphere molecules, and

Vcp is the molar volume of the hard sphere system in the close

packed limit. The limit in eqn (4) is consistent with those of

the dimensional interpolation of D-dimensional virials.35

Furthermore, the first 40 values of Bn(V0/Vcp)
n�1 from

dimensional interpolation of virials35 also agree well with

those predicted from the above approximants. Eqn (5) is the

same as the exact Percus–Yevick solution for hard sphere

system.53 The virials calculated from the Carnahan–Starling

(CS) equation20 also give the same limiting result.

Eqn (5) is a very important property since it suggests that if

m is sufficiently large, the ratio of the (m+ 1)th and mth terms

in the virial equation will be very close to Z, i.e.

q ¼ Bmþ1Zm

BmZm�1
¼ Bmþ1

Bm
Z 	 Z ð6Þ

Fig. 4 Virial coefficients reduced by the powers of relative volume

Vcp/V0.

Fig. 5 Ratios of virial coefficients.
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In other words, the higher-order terms after the mth term in

the virial equation can be well approximated by an infinite

geometric sequence with a common ratio q = Z. By summating

the sequence, one can obtain a good approximation for the

contribution of the higher-order terms to Z. In this way,

we have

Z 	
Xm
n¼1

BnZn�1 þ
Bmþ1Zm

1� Z
ð7Þ

where the first term is the contribution of the virial equation

truncated at the mth term. Eqn (7) clearly shows that the virial

expansion for hard sphere or hard disk system has a pole

at Z = 1. This pole determines the radii of convergence of the

EOS for the systems. It also confirms the theoretical derivation

of Yelash et al.:29 the limit of the ratio Bn/Bn+1 (or Bn/Bn�1) is

equal to the packing fraction at the pole of an EOS. Therefore,

the virial equation cannot predict the existence of fluid to solid

transition. This is consistent with the results of Percus–Yevick

solutions of hard sphere and hard disk systems.

As expected, the deviation of eqn (7) from exact Z increases

as m decreases. If m is not large enough, the common ratio q

must be modified as q = cZ (c4 1) so that the contribution of

high-order terms after the mth term can be fitted as accurate as

possible. In these cases, Z can be approximated as

Z 	
Xm
n¼1

BnZn�1 þ
Bmþ1Zm

1� cZ
ð8Þ

According to the results shown in Fig. 5, the constant c in

eqn (8) must be in the range of 1r cr 4. Apparently, eqn (8)

degenerates into eqn (7) when c = 1. For many practical

applications, m = 15–20 would be adequate if c is properly

chosen.

4. Prediction of compressibility factors

In order to obtain a reliable assessment of truncated forms

of virial equation, we need highly accurate compressibility

factors. In the past decades, molecular dynamics and Monte

Carlo simulations have obtained extensive data for the

compressibility factors of hard spheres23,27,28,54,55 and hard

disks,11,37,51,55,56 and most of them are consistent with each

other. Based on the consideration of accuracy and consistency,

we use the data of Erpenbeck and Wood,23 Erpenbeck and

Luban,51 Kolafa et al.28 and Kolafa and Rottner.37

As shown in Fig. 6, truncated virial EOS can be improved

systematically by adding more terms. For the hard disk

system, the virial EOS truncated at n=13 is already obviously

better than the Henderson equation33 in the fluid region

Z r 0.71. For hard sphere system, the virial EOS truncated

at n = 14 is already much better than the CS equation in the

whole stable fluid region (Z r 0.497). In the metastable fluid

region, it is only slightly worse than the CS equation. If the

virial equation is truncated at higher order, it will be much

more accurate.

The discussion in last section suggests that the contribution

of higher-order terms not used in the truncated virial equation

can be approximately described by adding a simple factor

(1 � cZ)�1 (c Z 1) to the last term. The resulting EOS is has

the form of eqn (8). By continuous use of the following

relation

Z
1� cZ

¼ 1

c

1

1� cZ
� 1

� �
ð9Þ

Eqn (8) can be rewritten as

Z ¼ 1þ
Xm�1
n¼1

Bnþ1 �
Bmþ1
cm�n

� �
Zn þ Bmþ1

cm�1
Z

1� cZ
ð10Þ

This form is very convenient for the derivation of fugacity

coefficient. In addition to eqn (8), we also test the following

modification:

Z ¼ 1þ B2Z
1� cZ

þ
Xm
n¼3
ðBn � B2c

n�2ÞZn�1 ðc � 1Þ ð11Þ

Table 9 summarizes the deviations of several truncated virial

equations and their modified forms. Generally, the two

modifications above are better than their corresponding

truncated virial equations, but the improvement becomes

weaker and weaker as the order of the equation increases.

However, we should notice the following facts: (i) eqn (11) for

hard spheres with c = 1/Zcp only has marginal improvement.

(ii) There are also exceptional cases. For example, the

performance of eqn (8) for hard disks with c = 1/Zcp is worse

Fig. 6 Deviations of predicted compressibility factors from those of

molecular simulations. (a) Hard sphere [3/3]B and (b) hard disk [4/3]B.

nmax is the maximum order of virial coefficients in the truncated virial

equation. The maximum deviation of the tenth virial equation for hard

sphere system in the metastable region (Z r 0.545) is 5.0%, which is

not shown.
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than their corresponding truncated virial equation when the

order increases to 18. This can be explained by the difference in

the nature of the fluid–solid transitions of the hard sphere and

hard disk systems. Now, it has been determined that the

fluid–solid transition in hard disk system consists of two

separate stages: the transition from isotropic fluid to hexatic

phase, and that from hexatic phase to solid phase, where the

first stage is a second-order transition.9,57 This is very different

from the first-order fluid–solid transition in hard sphere

system. It is well known that the experimental compressibility

factors of real fluids near the gas–liquid critical point

(a second-order transition) are always lower than those

predicted from the classical EOS parameterized with the

thermodynamic data outside the critical region. This suggests

that the critical singularity has a negative contribution to Z.

So is the fluid–solid transition in hard disk system. When the

virial equation for hard disks is truncated at n = 18, the

equation is already very accurate. If the 1/Zcp factor is added to

the equation, the predicted Z will inevitably be overestimated.

Different from the hard disks, the modification in eqn (8) for

hard spheres is always better than its corresponding truncated

virial EOS. This is because the metastability of the hard sphere

system in the fluid–solid transition region has a positive

contribution to Z, which is qualitatively consistent with the

contribution of the (1 � cZ)�1 factor.

5. Conclusions

It is found that the known virial coefficients Bn (n = 1–10) for

hard spheres and hard disks can be reasonably approximated

by nD�1, and the remainders of Bns (n Z 3) can be expressed

very accurately with Padé-type functions of n. Eight Padé-type

approximants for hard spheres give very close results for

n r 100. This is a strong indication of the good accuracy

and reliability of the approximants. In the study of the

remainders, we found the simulated B7 and B10 for hard

spheres are inconsistent with the other known virials. According

to the prediction of the approximants in this work, they are

modified as 53.2467 and 105.042, respectively. Unlike the

monotonically increasing remainders for hard spheres, the

known remainders for hard disks show maximum at n = 6.

This nature increases the difficulty in the prediction of higher-

order virials. The corresponding Padé-type approximants for

this system differ obviously from each other when n 4 20.

By analyzing the limiting behavior of the predicted virials,

we found that the viral equations for both hard spheres and

hard disks have a pole at the inaccessible packing fraction

Z= 1. The truncated virial equations based on the known and

refined values of B2–B10 and the predicted values of some

higher-order virials are adequate for accurate prediction of

hard sphere compressibility factors in the whole stable fluid

region, and those in the metastable fluid region can also be

well predicted up to Z= 0.545. The truncated high-order virial

EOS can be improved considerably by introducing a repulsive

factor (1� Zcp)
�1. The hard disk system also has similar results

for most of the fluid region (Z r 0.63). The exception only

appears in the vicinity of the fluid–solid transition point.
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