
JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 16 22 APRIL 2002
A fundamental-measure theory for inhomogeneous associating fluids
Yang-Xin Yua) and Jianzhong Wub)
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The fundamental-measure theory~FMT! of Rosenfeld for hard spheres is extended to
inhomogeneous associating fluids on the basis of Wertheim’s first-order thermodynamic
perturbation theory~TPT1!. The excess intrinsic Helmholtz energy, which includes contributions
from hard-sphere repulsion and from intermolecular bonding, is represented as a functional of three
weighted densities that are related to the geometry of spherical particles. In the absence of
association, this theory is the same as the original FMT, and at bulk conditions it reduces to TPT1.
In comparison with Monte Carlo simulation results, the extended fundamental-measure theory
provides good descriptions of the density profiles and adsorption isotherms of associating hard
spheres near a hard wall. Calculated results indicate that the critical temperatures for the vapor–
liquid equilibria of associating fluids in hard slit pores are suppressed compared with that for the
bulk fluid and the confinement has more significant impact on the liquid side than the vapor side of
the coexistence curve. Unlike nonpolar fluids at similar conditions, saturated associating liquids in
hard slit pores do not exhibit strong layering near the solid surface. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1463435#
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I. INTRODUCTION

Fluids near solid surfaces are commonplace in na
and in engineering, as encountered, for example, in gas
age, oil recovery, heterogeneous catalyst reactions, and
moval of various pollutants. Whereas theoretical methods
predicting equilibrium properties of inhomogeneous non
lar fluids are now well documented,1 much less understoo
are the properties of confined associating fluids, includ
water and asphaltene-containing crude oils in reservoir po

Molecular simulations, integral-equation approach
and density-functional theories are routinely used to inve
gate the properties of simple~i.e., nonassociating and mono
meric! systems at inhomogeneous conditions. However,
cause of the anisotropic association interactions, molec
simulations are often computationally intensive and anal
cal theories that give faithful representation of the local flu
structure are yet to be developed.2 The interplay between
chemical association and inhomogeneity makes the phas
havior of confined associating fluids interesting but diffic
to predict.3

For bulk associating fluids, Wertheim’s thermodynam
perturbation theory4–7 provides a relative simple yet accura
description of thermodynamic properties. With extensions
take into account van der Waals attraction and chain con
tivity, Wertheim’s theory has been used extensively for d
scribing vapor–liquid equilibria of associating fluids an
polymers.8–11 Applications to inhomogeneous systems ha
been proposed recently.12–17 Most current applications o
Wertheim’s theory are limited to the first-order perturbati
that takes into account only the structure of correspond
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hard-sphere reference system. While the second-order pe
bation theory is more accurate and provides the structur
associating fluid, the computational procedure is more
volved. Recently, the second-order Wertheim’s theory
been extended to represent the wetting of dimerizing fluid
contact with a hard wall.18

Integral-equation theories have been applied to inve
gate the density profiles of associating fluids near a h
wall.19,20 These methods are similar to the Henderso
Abraham–Barker~HAB! theory for simple fluids in contac
with an impermeable surface where the surface is rep
sented as a distinct component. Solution to the Ornste
Zernike equation gives pair correlation functions as well
the fluid density profiles and, subsequently, thermodyna
properties. One major limit of this approach is that comm
closures such as the Percus–Yevick or hypernetted chain
proximation are unable to predict phase transitions.

Density-functional theory has been applied extensiv
to describe interfacial phenomena, including adsorption, w
ting, and freezing of fluids at a variety of nonuniform
conditions.21 Like a typical theory for uniform simple fluids
a density-functional theory for inhomogeneous systems
often established following a perturbation approach wh
hard spheres are used as the reference and attractive int
tions are taken into account using mean-field approxim
tions. For instance, Kierlik and Rosinberg13,14 proposed a
perturbation theory for nonuniform hard-sphere-chain flu
based on Wertheim’s theory for chain formation and
weighted-density-functional theory for hard-sphere m
tures.22 Similarly, Seguraet al.14,15 presented a density
functional theory that combines Tarazona’s receipt for
weighted densities of hard spheres~Mark II!23,24 with Wer-
theim’s theory for association. Segura’s theory agrees w
with Monte Carlo simulation for the density profiles of ass
ciating hard spheres near a hard wall. It has been succ
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fully extended to binary mixtures of associating and neu
hard spheres of equal size.25 Using the density-functiona
theory by Seguraet al., Pizio et al.26 calculated the density
profiles at the interface of vapor–liquid coexistence for
sociating fluids in slitlike pores. Also using the densit
functional theory by Seguraet al., this group investigated
density distributions, wetting transitions,27 and capillary
condensations28 of associating Lennard-Jones fluids in sl
like pores. One drawback of Segura’s theory is that it giv
poor results near adsorption–desorption transition. Furt
more, extension of Segura’s theory to inhomogeneous m
tures containing molecules of different sizes is difficult b
cause the Tarazona weight functions are applicable onl
hard spheres of the same size.21 Following a procedure simi-
lar to that used by Seguraet al.,4 Patrykiejewet al. proposed
a density-functional approach29 for nonuniform associating
fluids based on the so-called modified Meister–Kr
theory.30–33They indicated that this method provides sligh
better density profiles compared with that developed by
gura, Chapman, and Shukla.14

In this work, we report an extension of the fundament
measure theory~FMT! of Rosenfeld for hard spheres34,35 to
nonuniform associating fluids. The FMT gives the most
curate descriptions of the structural and thermodyna
properties of inhomogeneous hard-sphere fluids. Unlike m
density-functional theories for inhomogeneous syste
FMT is able to predict the structure of homogeneous b
fluid rather than to use it as an input. It is assumed that
excess intrinsic Helmhotz energy can be expressed in
form of weighted-density approximation with the weig
functions taking into account the geometric feature o
spherical particle. The local Helmholtz free energy is deriv
following the scaled-particle theory. The density-independ
weight functions provide the fundamental measure o
spherical particle: two scalar functions representing the
erages over particle volume and surface, and a surface ve
function representing the density changes across the pa
surface. Because these weight functions are independe
density distributions, the weighted densities in FMT a
more convenient to calculate than those in most nonlo
density-functional theories. Besides, FMT can be unamb
ously extended to mixtures. To extend FMT to associat
fluids, we use Wertheim’s first-order perturbation theory; b
unlike in a typical local-density approximation, the intrins
Helmholtz energy due to association depends on scala
well as on vector-weighted densities. In this work the e
tended FMT has been used to describe the density profile
associating hard spheres and mixtures of neutral and as
ating hard spheres near a hard wall or in hard slit po
Because we are primarily concerned with the properties
the fluid phases, the original formula of FMT is used in th
work but inclusion of recent developments of FMT
straightforward.

II. THEORY

A. Model

We consider a binary mixture of neutral and associat
hard spheres near a hard wall or confined between two
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
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allel hard walls~slit pore!. These hard spheres are otherwi
identical except some of them have four associating s
placed in the Bol fashion, i.e., the four bonding sites, des
nated byA, B, C, andD, are placed in tetrahedral symmet
around a spherical core.36 The pairwise-additive two-body
potential is given by14,25

u~r12,v1 ,v2!5uR~r 12!1(
a

(
b

uab~r12,v1 ,v2!, ~1!

wherer 12 is the center-to-center distance between sphere
and 2, v1 and v2 represent the orientations of the tw
spheres, and the double sum applies over all associa
sites. The reference potentialuR represents hard-sphere r
pulsion, given by

uR~r 12!5H `, r 12,~s11s2!/2,

0, r 12.~s11s2!/2,
~2!

wheres i designates hard-sphere diameter for componeni.
In Eq. ~1!, uab represents the association potential betwee
bonding sitea on a spherical particle and a bonding siteb
from a different sphere. Following Seguraet al.,14 the asso-
ciation potential is

uab~r12,v1 ,v2!5H 2«, r 12,r C ,ua1,uC ,ub2,uC ,

0, otherwise,
~3!

whereuXi (X5a,b; i 51,2) is the angle made by the vecto
from the center of moleculei to the siteX and the vectorr12.
As given in Refs. 14 and 25, only associations betweenAC,
BC, AD, andBD sites are allowed and all the bonding ene
gies are assumed to be identical. The radial limit of asso
tion is set tor C50.525(s11s2)/2 and the angular limit is
uC527°.

When the hard spheres are in contact with a single h
wall, the wall potential is

C~z!5H `, z<0,

0, otherwise,
~4!

wherez is the distance from the center of a hard sphere to
wall. When hard spheres are confined in a slitlike hard po
the potential due to the confinement is

C~z!5H `, z<0 or z>H,

0, otherwise,
~5!

whereH represents the pore width.

B. Density-functional theory

The essential task of a density-functional theory for
homogeneous fluids is to derive an analytical expression
the grand potentialV, or equivalently, the intrinsic Helm-
holtz energyF, as a functional of density distributions. For
binary mixture at given temperatureT, total volume V,
chemical potentialm i , and external potentialC i(r ) for each
component, the grand potential is minimized at equilibriu
and the equilibrium density distributionr i(r ) satisfies

dV

dr i~r !
50. ~6!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The grand potential and the intrinsic Helmholtz energy
related by

V5F@r1~r !,r2~r !#1(
i 51

2 E drr i~r !@C i~r !2m i #. ~7!

Once we have an expression for the intrinsic Helmholtz
ergy, solution to Eq.~6! gives the equilibrium density pro
files and subsequently, relevant thermodynamic propertie

To take into account the nonideality arising from inte
molecular interactions, the intrinsic Helmholtz energy is
ten expressed as contributions from an ideal-gas term an
excess term due to intermolecular interactions

F@r1~r !,r2~r !#5F id@r1~r !,r2~r !#1Fex@r1~r !,r2~r !#. ~8!

The ideal-gas contribution is given by the exact expressi

F id@r1~r !,r2~r !#5kBT(
i 51

2 E drr i~r !$ ln~r i~r !l i
3!21%, ~9!

where l i5h/(2pmikBT)1/2 represents the thermal wave
length withkB standing for the Boltzmann constant. For mo
nonideal systems, the excess intrinsic Helmholtz energy
only be evaluated approximately.

As in a typical perturbation approach, we assume t
the excess intrinsic Helmholtz energy for a system of in
mogeneous associating hard spheres consists of two te
the first from the hard-sphere reference system and the
ond from perturbation

Fex5kBTE dr$Fhs@na~r !#1Fassoc@na~r !#%, ~10!

where F@na(r )# stands for the excess Helmholtz ener
density, and the superscripts ‘‘hs’’ and ‘‘assoc’’ denote,
spectively, hard-sphere repulsion and association. This
composition of Helmhotz energy follows the spirit of th
interparticle potential as given in Eq.~1!.

1. Reference hard-sphere system

The fundamental-measure theory of Rosenfeld provi
an expression for the excess intrinsic Helmholtz energy
to hard-sphere interactions. In this theory, the excess intri
Helmholtz energy density is represented as a function of
scalar and vector weighted densitiesna(r ),34

na~r !5(
i

na,i~r !5(
i
E r i~r 8!wi

~a!~r2r 8! dr 8, ~11!

wherea50, 1, 2, 3,V1, V2. Among the six weight functions
wi

(a)(r ), three of them characterize the geometry of a sph
cal particle: two scalar functions are related to volume a
surface area, and a vector function is related to the grad
across a sphere, i.e.,

wi
~3!~r !5Q~Ri2r !, ~12!

wi
~2!~r !5d~Ri2r !, ~13!

wi
~V2!~r !5~r /r !d~Ri2r !. ~14!

The other three weight functions are proportional to
above geometric functions:
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n0i5
n2i

4pRi
2 ; n1i5

n2i

4pRi
; nV1i5

nV2i

4pRi
. ~15!

In Eqs.~12!–~15!, Ri is the hard sphere radius,Q(r ) is the
Heaviside step function, andd(r ) is the Dirac delta function.
For 0<a<3, the weighted densitiesna(r ) have the units of
@na#5(volume)(a23)/3. The vector-weighted densitynV1 has
the same units asn1(r ) andnV2 has the same units asn2(r ).

From the scaled-particle differential equation, Rosenf
derived the following excess Helmholtz energy density
nonuniform hard spheres37,38

Fhs$na~r !%5F1
hs1F2

hs1F3
hs, ~16!

where

F1
hs52n0 ln~12n3!, ~17!

F2
hs5

n1n22nV1•nV2

~12n3!
, ~18!

F3
hs5

1
3n2

32n2nV2•nV2

8p~12n3!2 . ~19!

In Eqs. ~18! and ~19!, nV1 and nV2 are vectors, andnV1

•nV2 is a dot product. In the limit of a homogeneous flui
the two vector-weighted densitiesnV1 and nV2 vanish, and
the Helmholtz energy becomes identical to that derived fr
the Percus–Yevick theory.

Equation~17! is exact in the limit of one-dimensiona
hard-rod fluid.39 The first and second terms on the right-ha
side of Eq. ~16! give a reasonable approximation for th
Helmholtz energy of hard disks. Corrections to the third te
on the right side of Eq.~16! have been proposed to improv
the performance of the fundamental-measure theory in
duced dimensionality.39,40 In this work we use the origina
expression because the focus here is on the equilibrium p
erties of nonuniform fluids, for which the corrections ha
only marginal effects.

In the limit of a uniform fluid, the density distribution
for each component becomes the corresponding bulk den
r i(r )[rb,i , and the scalar-weighted densities coincide w
the variables of the scaled-particle theory for bulk ha
spheres

n0i5rb,i , n1i5Rirb,i , n2i54pRi
2rb,i ,

n3i54pRi
3rb,i /3. ~20!

2. Perturbation

For a bulk associating fluid, the Helmholtz energy de
sity due to associations is given by

Fassoc,b5(
i

M irb,i S ln xa
b,i2

xa
b,i

2
1

1

2D , ~21!

whereMi is the number of association sites per molecule
speciesi, xa

b,i is the fraction of molecules of componenti not
bonded at siteA. In Eq. ~21!, xa

b,i is calculated from
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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xa
b,i5

1

11( jrb, j (axa
b, jD i , j , ~22!

where D i , j54pKgi j
hs,b(s i j ) f ab , K is a constant reflecting

the volume available for bonding of the two sites on m
ecules 1 and 2,f ab5exp(«/kBT)21 represents the Maye
function, andgi j

hs,b(s i j ) is contact value of the hard-sphe
pair correlation function:

gi j
hs,b~s i j !5

1

12j3
1

3s is j

s i1s j

j2

~12j3!2

12S s is j

s i1s j
D 2 j2

2

~12j3!
, ~23!

with jm5(p/6)( i 51
2 r is i

m , m50,1,2,3, and s i j 5(s i

1s j )/2. Following Seguraet al.,14,25 we use K51.4849
31024s3 in the following calculations.

The excess Helmholtz energy due to association is ta
into account using the weighted-density approximation.
extend Eq.~21! to inhomogeneous systems, intuitively w
may replacej3 , j2 andrb,i in Eqs.~21!–~23! with, respec-
tively, n3 , 1

6n2 and n0i as suggested by Eq.~20!. This ap-
proach includes only the scalar-weighted densities in ca
lating the Helmholtz energy. In order to take into account
vector-weighted densities, we introduce two proportio
factors z i512nV2i•nV2i /n2i

2 and z512nV2•nV2 /n2
2, to

‘‘correct’’ the weighted densitiesn0i , n2 , and n2
2. In other

words, we replacej3 , j2 , j2
2, and rb,i in Eqs. ~21!–~23!

with n3 , 1
6n2z, 1

36n2
2z, andn0iz i , respectively. In this case

the Helmholtz energy density of association becomes

Fassoc~na!5(
i 51

2

n0iz iM iF ln xA
~ i !~r !2

xA
~ i !~r !

2
1

1

2G , ~24!

wherexA
( i )(r ) is the fraction of moleculesi at positionr not

bonded at siteA, and it is obtained from

xA
~ i !~r !5

1

11( jn0 jz j (axa
~ j !~r !D i j ~r !

, ~25!

where

D i j ~r !54pKgi j
hs~s i j ,na! f ab , ~26!

gi j
hs~s i j ,na!5

1

12n3
1

s is j

s i1s j

n2z

2~12n3!2

1S s is j

s i1s j
D 2 n2

2z

18~12n3!3 . ~27!

Once we have an expression for the intrinsic Helmho
energy, minimization of the grand potential with respect
the density distributions@Eq. ~6!# leads to the Euler–
Lagrange equation

r i~r !5l i
23 exp$ci

~1!@r ,r1~r !,r2~r !#

1@m i2c i~r !#/~kBT!%, ~28!

whereci
(1)@r ,r1(r ),r2(r )# is the one-particle direct correla

tion function, obtained from
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
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ci
~1!@r ,r1~r !,r2~r !#52

1

kBT

dFex@r1~r !,r2~r !#

dr i~r !

52E dr8(
a

]~Fhs1Fassoc!

]na

3wi
~a!~r 2r 8!. ~29!

At equilibrium, the chemical potentials of all species rema
constant. When the confined fluid is in equilibrium with
bulk phase, the chemical potential can be calculated from

m i5kBT ln~rb,il i
3!1m i

ex,hs1m i
ex,assoc, ~30!

where the first term on the right-hand side comes from
idea-gas reference state, the hard-sphere termm i

ex,hs is from
the scaled-particle theory,41 and the association chemical po
tential is calculated from Wertheim’s thermodynamic pert
bation theory.4–10

III. RESULTS AND DISCUSSION

We apply the Picard-type iterative method to solve t
Euler–Lagrange equation@Eq. ~28!#. For hard spheres near
hard wall or within slit pores, the density distributions va
only in one direction. To avoid divergence, it is necessary
mix the new and old density profiles in certain proportio
during the iteration process, i.e.,

r in
~ i 11!~z!5rout

~ i ! ~z! f 1r in
~ i !~12 f !. ~31!

The mixing parameterf varies from 0.01 at high densitie
(rb* >0.9) to close to unity at low densities. The exact val
is obtained by trial and error method.

The weighted densities and the integrals in Eq.~29! are
evaluated by a trapezoidal rule with a mesh width equa
0.01s for a satisfactory numerical accuracy. The iteratio
terminate when the maximum difference between two sub
quent density profiles is smaller than 1027. Once the density
profiles are obtained, the fractions of moleculesi at position
z not bonded at sitea are calculated from42

xa
~ i !~z!5F114pKghs~s i ,rb,i !

3E
211z

11z

xa
~ i !~z8!r i~z8! dz8G21

, ~32!

where ghs(s i ,rb,i) is the contact value of the hard-sphe
pair correlation function at the bulk densityrb,i . With the
assumptions that all four sites are equivalent regardles
the distance from the hard wall, the fraction of monome
can be approximated by

x0~z!5xa
4~z!. ~33!

The surface excess for componenti at the hard wall is
related to the density profile by

G is i
25E

0

`

@r i~z!s i
32rb,is i

3# dz, ~34!

where r i(z)s i
3 is the local reduced number density an

rb,i(z)s i
3 is the reduced number density in the bulk.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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A. An associating fluid near a hard wall

The following comparison between the densit
functional theory and simulation results is based on the s
set of parameters for intermolecular potentials and bulk d
sities. No adjustable parameter is used. In all these calc
tions, the particles have the same diameters. The definition
of the reduced temperature and reduced density are give
respectively,T* 5kBT/« and r* 5rs3, where« is the site
bonding energy.

Figure 1 shows the density profile of associating h
spheres at temperature 1/T* 55 and bulk density rb*

FIG. 1. Density profiles of associating hard spheres near a hard wall
the theory by Seguraet al. ~Ref. 14! ~dash line!, from the extended FMT
~solid line!, and from simulation~open triangles!. Here 1/T* 55, rb*
50.9036.

FIG. 2. Density profiles of associating hard spheres against a hard wa~a!
rb* 50.1977, 1/T* 53; ~b! rb* 50.1994, 1/T* 55; and ~c! rb* 50.2112,
1/T* 57. The open triangles represent the simulation results~Ref. 14!, the
solid lines represent the calculated results from the extended FMT.
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
e
n-
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by,

d50.9036 near a hard wall predicted from the extend
fundamental-measure theory. Also shown in Fig. 1 are
corresponding results from Monte Carlo simulation and fro
the density-functional theory proposed by Seguraet al.14

Figure 1 does not include the results from the inhomo
neous version of Wertheim’s theory because it gives m
too high peaks in the density profiles. In this example, b
density-functional theories agree reasonably well with Mo
Carlo simulation results; however, the theory present h
has the advantage of numerical simplicity because the we
functions are independent of density.

Figures 2–5 compare the density distributions of asso
ating hard spheres near a hard wall predicted from the
tended fundamental-measure theory with those from mole
lar simulations at four average reduced densities:r* 50.2,
0.5, 0.75, and 0.942, and for each densities, three redu
bonding energies:«/kBT53, 5, and 7. In most cases th
present theory provides satisfactory density profiles exc
near the freezing point, where it slightly overestimates
contact values. Similar discrepancy has been observed w
FMT is applied to hard-sphere fluid near a hard wall.

Figure 2 indicates that at a low overall average dens
the associating hard spheres are adsorbed to a hard
when the bonding is weak but become depleted from
wall when the bonding energy is sufficiently high. Adsor
tion at small association energy is due to the excluded v
ume effect as occurred in a neutral hard-sphere system
high association energy, the surface effects extended far f
the wall, which suggests a long-range solvation force. In t
case, the present theory slightly overestimates the den
distributions in the depletion zone.

m

FIG. 3. Same as Fig. 2 but~a! rb* 50.4874, 1/T* 53; ~b! rb* 50.4914,
1/T* 55; and~c! rb* 50.5239, 1/T* 57.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7099J. Chem. Phys., Vol. 116, No. 16, 22 April 2002 Theory of inhomogeneous associated fluids
As density increases, the density profiles shift toward
wall, as shown in Figs. 3 and 4. It is interesting to note t
in Fig. 3~c!, where the overall reduced density equal to 0
and 1/T* 57, associating hard spheres are slightly desor
from the hard wall and, due to the cancellation of associa
and excluded volume effects, the density distribution appe
uniform. The simulation data in Fig. 3~c! are from Patrykie-
jew et al.27

Figure 5 presents the density distributions of associa
hard spheres when the bulk density is close to the h
sphere freezing point. While the extended FMT theory p
dicts accurate peak positions, it gives slightly too high co
tact values. The discrepancy probably arises from
approximations used in the FMT.

The local fraction of unbonded associating hard sphe
is calculated from Eq.~32!. Figure 6 gives the monome
fraction x0(z) as a function of the distance from the ha
wall for the systems as given in Fig. 2. Monomer fracti
falls away from the wall because the presence of the w
blocks some bonding sites. While in general the the
agrees well with simulation results, Fig. 6 indicates that
discrepancy increases with the association energy. All
monomer profiles exhibit a change in slope atz5s. This
cusp is related to the integral in Eq.~32! and the approxima-
tion that bonding occurs only at hard-sphere contact.14 Spe-
cifically, if a molecule sits atz,s, its association with a
second molecule on the wall side is restricted by the
cluded volume effect; while far from the wall (z.s), the

FIG. 4. Same as Fig. 2 for~a! rb* 50.7191, 1/T* 53; ~b! rb* 50.7257,
1/T* 55; and~c! rb* 50.7366, 1/T* 57.
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wall has little effect on intermolecular bonding andx0(z) is
almost constant.

Figure 7 shows calculated and simulated adsorption
therms of the four-site associating hard-sphere fluid nea
hard wall at 1/T* 50, 5, and 7. All three adsorption iso
therms correspond to supercritical conditions~the corre-
sponding equation of state for bulk fluids gives the critic
temperature«/kBTc51/Tc* 57.76!. At a low bonding energy,
the surface excess increases monotonically with the b
density. However, when the bonding energy is sufficien
high, the surface excess first decreases with the bulk den

FIG. 5. Same as Fig. 2 for~a! rb* 50.9158, 1/T* 53; ~b! rb* 50.9036,
1/T* 55; and~c! rb* 50.9085, 1/T* 57.

FIG. 6. Local monomer fraction for the associating hard-sphere fluid ne
hard wall. The symbols represent simulation data~Ref. 14! and solid lines
represent the extended FMT results. The curves, from top to bottom, ar
rb* 50.1977, 1/T* 53 ~squares!; rb* 50.1994, 1/T* 55 ~circles!; and rb*
50.2112, 1/T* 57 ~triangles!.
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@due to the depletion effect as shown in Fig. 2~c!#, exhibits a
minimum, and finally rises as the density is further increas
The desorption to adsorption transition of associating h
spheres can be explained by the competition betw
excluded-volume and bonding: the excluded volume fav
accumulation of hard spheres near the wall but because
wall is neutral, bonding between hard spheres are restri
close to the wall. At low densities and high bonding energ
the association effect prevails and the density profile sh
depletion, whereas at conditions of high density and low
sociation energy, in contrast, the density profile is domina
by the excluded-volume effect, leading to adsorption. T
adsorption isotherms predicted by the density-functio
theory are in good agreement with results from molecu
simulation at both high and low association energies.

B. Binary mixtures of associating fluids near a hard
wall

We also investigated the density profiles of binary m
tures of neutral and associating hard spheres near a
wall. For comparison with simulation results, all ha
spheres considered here have the same size. Figures
show the ratios of hard-sphere density to associating sp
density,rn(z)/ra(z), and the normalized density profiles o
associating spheres,ra(z)/rb,a , as functions of the distanc
from the wall at several bulk densities and temperatu
Here ra(z) represents the density distribution of four-s
associating hard spheres,rn(z) is the density distribution of
neutral hard spheres, andrb,a is the bulk density of associ
ating hard spheres.

Figure 8 compares the density profiles calculated fr
the extended fundamental-measure theory with those f
Monte Carlo simulation results25 at rb* 50.1996, rb,a*
50.1014, 1/T* 57. Both theory and simulation show
depletion of associating particles near the hard wall. As d
cussed earlier, that depletion is induced by the reduction
the accessibility of the bonding sites. Close to the h
wall the density of associating spheres falls initially a

FIG. 7. Adsorption isotherms of the four-site associating hard sphere
near a hard wall. The symbols represent the simulation data~Ref. 14! and
solid lines represent the results of the extended FMT. The curves, from
to bottom, are for 1/T* 50 ~circles!, 1/T* 55 ~squares!, and 1/T* 57 ~tri-
angles!.
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then increases with the distance. Figures 8~a! and 8~b! indi-
cate while the extended fundamental-measure theory cat
the essential details, it overestimates slightly the local d
sity near the wall.

Figure 9 gives the density profiles at the same redu
temperature as that given in Fig. 8 but at higher redu

id

op

FIG. 8. A binary associating fluid mixture~rb* 50.1996, rb,a* 50.1014,
1/T* 57! near a hard wall:~a! the ratio of hard spheres to associatin
spheres versus distance from the wall;~b! the reduced density of associatin
spheres versus distance from the wall. The symbols represent Monte C
simulation results~Ref. 25! and the solid line represents the result of th
extended FMT.

FIG. 9. A binary associating fluid mixture~rb* 50.5134, rb,a* 50.3089,
1/T* 57! near a hard wall:~a! ratio of hard spheres to associating spher
versus distance from the wall;~b! reduced density of associating spher
versus distance from the wall. The symbols represent Monte Carlo sim
tion results~Ref. 25!, the dashed line represents the result from the theory
Seguraet al. ~Ref. 25!, and the solid line represents the result of the e
tended FMT.
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densities~rb* 50.5134,rb,a* 50.3089, 1/T* 57!. Also shown
in this figure are simulation and calculated results from
gura et al.25 Figure 9 shows that Segura’s theory undere
mates the depletion effect and, consequently, the ratio o
cal densities for hard spheres and associating spheres.
theoretical methods correctly predict the little kink arou
z51s. In Fig. 9~b!, the trough near the wall is enhanced
comparison with that in Fig. 8~b!.

Figure 10 presents the ratio of the local densities of h
spheres and associating spheres as well as the density d
bution of associating spheres near a hard wall atrb*
50.7173,rb,a* 50.3604, and 1/T* 55. Both density and tem
perature here are higher than those in Fig. 9. In this case
density profiles are dominated by the excluded-volume ef
so that even associating spheres show adsorption to the
It is interesting to note that the ratio of local densities of ha
spheres and the associating spheres shows a maximum
intermediate density@Figs. 8~a!, 9~a!, and 10~a!#. Figures
8–10 indicate that the extended fundamental-measure th
predicts the local compositions and density profiles in fav
able agreement with those from molecular simulations.

Figure 11 shows the fraction of unbonded associat
hard spheres as a function of the distance from the hard
for the three binary mixtures considered in Figs. 8–10. T
extended fundamental measure theory works best for
case corresponding torb* 50.7173,rb,a* 50.3604, and 1/T*
55 while it underestimates the monomer profile for t
other two cases. In all cases the local density of monom
exhibits a change in slope atz5s.

C. Capillary condensation in a slitlike pore

We now apply the extended fundamental-measure the
to investigate the phase behavior of the associating h
spheres in slitlike hard pores. For the vapor–liquid equil
rium of confined fluids, the coexistence point is found by t
equality of the grand canonical potentialsV for the two dis-

FIG. 10. Same as Fig. 8 forrb* 50.7173,rb,a* 50.3604, and 1/T* 55.
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tinct density profiles at a fixed temperatureT and chemical
potentialm. In other words, at vapor–liquid equilibrium, tw
sets of density distributions can be found that give the sa
minimum grand potential. The average density in the p
rav is calculated from

rav5E
0

H

r~z! dz/H. ~35!

When the pore width is infinite, the average densities in
pore correspond to those for saturated bulk vapor and liq
phase, i.e.,rav5rb . In this case, the requirement of equ
grand potential between vapor and liquid phases at cons
temperature, volume, and chemical potential is equivalen
that of equal in pressure because for a bulk fluid, the gr
potential isV52PV.

Figure 12 shows the vapor–liquid coexistence curves
the bulk and for the confined associating hard spheres a
pore width equal toH510s and 20s. As for confined non-
polar fluids, the coexistence curves in the slit pore are n
rowed and the critical temperatures are depressed relativ
that for the bulk case. The density for the liquid side of t
coexistence curve is considerably lower than that for the b
because the depletion of associating spheres from the
walls leads to a low value of the average density. The ins
plot in Fig. 12 magnifies the vapor side of the coexisten
curves. The condensation density of confined associa
hard spheres within a hard slit pore could be higher or low
than that corresponding to the bulk phase, depending on
system temperature. The confinement causes a small
crease in the critical density. The entire phase diagram
associating fluid is shifted toward lower temperatures a
lower densities in comparison with the corresponding b
phase diagram. Simulation results are not presented in
12 because we are not aware of any data for the vapor–liq
coexistence of confined associating fluids.

FIG. 11. Fraction of unbonded associating hard spheres near a hard
in binary mixtures. The symbols represent the simulation data~Ref. 25! and
the lines represent the results of the extended FMT. The curves, from to
bottom, are for rb* 50.1996, rb,a* 50.1014, 1/T* 57 ~squares!; rb*
50.7173,rb,a* 50.3604, 1/T* 55 ~circles!; and rb* 50.5134,rb,a* 50.3089,
1/T* 57 ~triangles!.
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Figure 13 shows the density profiles of the saturated
por and liquid phases at two pore widths given in Fig. 1
Here the reduced density of the liquid phase is about
close to that given in Fig. 2~c!. These relatively smooth den

FIG. 12. Phase diagrams for a four-site associating hard-sphere fluid in
~solid lines! and in slitlike pores of different width~H510s, dashed lines
and 20s, dotted lines!.

FIG. 13. Density profiles of the coexisting vaporlike and liquidlike pha
for the four-site associating hard-sphere fluid in hard slit pores at 1T*
50.126 with pore width~a! H520s and ~b! H510s.
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sity profiles are dramatically different from those for co
fined nonpolar fluids where strong oscillation in density d
tributions has been observed.

IV. CONCLUSIONS

A new density-functional theory is presented to descr
the behavior of associating hard spheres near a hard wa
within hard slitlike pores based on the fundamental-meas
theory in conjunction with Wertheim’s thermodynamic pe
turbation theory. Extensive comparison with Monte Ca
simulation results for the density profiles, the fraction
monomers, and adsorption isotherms of associating h
sphere fluids near a hard wall indicates that the curr
theory is fairly accurate except near freezing where it sligh
overestimates the contact values. As observed in Mo
Carlo simulations, the calculations presented here con
that association has significant effect on the adsorpt
desorption of molecules near a hard-sphere surface.
large depletion zone of associating hard spheres near a
wall suggests that the solvation force in an associating fl
could be long ranged.

We also calculated the vapor–liquid coexistences of c
fined associating hard spheres in hard slit pores. In gen
the confinement depresses the two-phase region, as obs
in inhomogeneous nonpolar fluids. The confinement ha
larger effect on the liquid side of the coexistence line th
that on the vapor side, probably due to the depletion of
sociating molecules from the hard surface. On the vapor s
the condensation density of confined associating h
spheres within a hard slit pore could be higher or lower th
that corresponding to the bulk phase, depending on temp
ture. We found that the density profiles of coexisting vap
and liquid phases are very different from those for confin
nonpolar systems.

For one-component associating hard spheres at low d
sities, this new density-functional theory has similar acc
racy compared with the theory by Seguraet al.;14,25 but at
high densities and for mixtures, it gives better results. B
cause the weight functions used here are independent of
sity, the present density-functional theory is computationa
more efficient than other nonlocal weighted density metho
Moreover, the present theory can be directly applied to m
tures of associating fluids, including those with differe
sizes and those containing chain molecules.
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