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A fundamental-measure theory for inhomogeneous associating fluids
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The fundamental-measure theoffMT) of Rosenfeld for hard spheres is extended to
inhomogeneous associating fluids on the basis of Wertheim’'s first-order thermodynamic
perturbation theoryfTPT1). The excess intrinsic Helmholtz energy, which includes contributions
from hard-sphere repulsion and from intermolecular bonding, is represented as a functional of three
weighted densities that are related to the geometry of spherical particles. In the absence of
association, this theory is the same as the original FMT, and at bulk conditions it reduces to TPT1.
In comparison with Monte Carlo simulation results, the extended fundamental-measure theory
provides good descriptions of the density profiles and adsorption isotherms of associating hard
spheres near a hard wall. Calculated results indicate that the critical temperatures for the vapor—
liquid equilibria of associating fluids in hard slit pores are suppressed compared with that for the
bulk fluid and the confinement has more significant impact on the liquid side than the vapor side of
the coexistence curve. Unlike nonpolar fluids at similar conditions, saturated associating liquids in
hard slit pores do not exhibit strong layering near the solid surface20@2 American Institute of
Physics. [DOI: 10.1063/1.1463435

I. INTRODUCTION hard-sphere reference system. While the second-order pertur-
bation theory is more accurate and provides the structure of

Fluids near solid surfaces are commonplace in nature L . . . _
associating fluid, the computational procedure is more in-

and in engineering, as encountered, for example_, n gas Sto\r/'olved. Recently, the second-order Wertheim’s theory has
age, oil recovery, heterogeneous catalyst reactions, and r

moval of various pollutants. Whereas theoretical methods fOEeen exte_nded o represBent the wetting of dimerizing fluids in
contact with a hard walft

predicting equilibrium properties of inhomogeneous nonpo- : . . . .
. Integral-equation theories have been applied to investi-

lar fluids are now well documentédnuch less understood . . L :
ate the density profiles of associating fluids near a hard

are the properties of confined associating fluids, includin all 1920 These methods are similar to the Henderson—

water and asphaltene-containing crude oils in reservoir porei&braham—Barke(HAB) theory for simple fluids in contact

Molecular simulations, ~integral-equation approacheswnh an impermeable surface where the surface is repre-
and density-functional theories are routinely used to investi- P P

gate the properties of simplee., nonassociating and mono- Se”t‘?d as a Q'St'n?t component. S(_)Iut|on to the Omstein-—
meric) systems at inhomogeneous conditions. However be;ermkg equat'lon gives pair correlation functions as well as
cause of the anisotropic association interactions, molecul::itpe fIU|t(_:i degsny prqf|le|_s z_atndf, tshL.JbsequentIK,_thtirrr:odynamlc
simulations are often computationally intensive and analytiplrOper I€S. hne ":ﬁjorp'm' 0 Vi |s_al?pro:c IS tta dcorr]mfnon

cal theories that give faithful representation of the local fluig®'OSures such as the Fercus—yevick or hypernetied chain ap-

structure are yet to be developedhe interplay between proximati_on are qnable o predict phase trangitions. .
chemical association and inhomogeneity makes the phase be- Den_S|tyjfunct|0naI theory has t_)een gpphed ext(_enswely
havior of confined associating fluids interesting but difficulttp describe mterfamal phenomena, mclqdmg adsorpt|on, wet-
to predict® ting, _gnd 1;re§2|ng of_ fluids at a varllety of_ nonumform
For bulk associating fluids, Wertheim's thermodynamiccond't'qnsg L|k¢ a typical theory_for uniform simple fluids, _
perturbation theol7” provides a relative simple yet accurate a densny-fu!’lcnonal thef’ry for mhomogeneous systems Is
description of thermodynamic properties. With extensions t@ften established following a perturbation approach where

take into account van der Waals attraction and chain conne&ard spheres are used as the reference and attractive interac-

tivity, Wertheim's theory has been used extensively for deionS are taken into account using mean-field approxima-

. . . . . 4
scribing vapor—liquid equilibria of associating fluids and ions. For instance, Kierlik and Rosinbétg* proposed a

polymersé—1! Applications to inhomogeneous systems havePerturbation theory for nonuniform hard-sphere-chain fluids
been proposed recenfi§:*” Most current applications of ba;ed on We_rtheim's_ theory for chain formation and_ a
Wertheim’s theory are limited to the first-order perturbation'Veighted-density-functional theory for hard-sphere mix-

22 H 14,15 H
that takes into account only the structure of correspondin?“res; Similarly, Seguraet al: presented a density-
unctional theory that combines Tarazona’s receipt for the

_ o . ~ weighted densities of hard spher@gark 11)2*2* with Wer-
dFrom the Department of Chemical Engineering, Tsinghua Un|verS|ty,theim,S theory for association. Segura’s theory agrees well
Beijing 100084, People’s Republic of China, . . . ’ . .
bAuthor to whom correspondence should be addressed. Electronic maiVith Monte Carlo simulation for the density profiles of asso-
jwu@engr.ucr.edu ciating hard spheres near a hard wall. It has been success-
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fully extended to binary mixtures of associating and neutrahllel hard walls(slit pore. These hard spheres are otherwise
hard spheres of equal siZ&.Using the density-functional identical except some of them have four associating sites
theory by Segurat al, Pizio et al?® calculated the density placed in the Bol fashion, i.e., the four bonding sites, desig-
profiles at the interface of vapor—liquid coexistence for asmnated byA, B, C, andD, are placed in tetrahedral symmetry
sociating fluids in slitike pores. Also using the density- around a spherical cor8.The pairwise-additive two-body
functional theory by Segurat al, this group investigated potential is given b{f*?°

density distributions, wetting transitioRs, and capillary

condensatiorfé of associating Lennard-Jones fluids in slit- U(rlz,wl,wz):UR(rlez E Uap(T 12,01, 0), (1)

like pores. One drawback of Segura’s theory is that it gives a B

poor results near adsorption—desorption transition. Furthekyherer , is the center-to-center distance between spheres 1
more, extension of Segura’s theory to |nh0mogeneous MiXand 2, W, and w, represent the orientations of the two
tures Containing molecules of different sizes is difficult be'sphereS, and the double sum app“es over all association

cause the Tarazona weight functions are applicable only tgjtes. The reference potentiak represents hard-sphere re-
hard spheres of the same sf2é=ollowing a procedure simi- pulsion, given by

lar to that used by Segue al.* Patrykiejewet al. proposed
a density-functional approathfor nonuniform associating Un(F 1) = ®, Tp<(o1t+07)/2,
fluids based on the so-called modified Meister—Kroll RV L 0, ry>(oi+0,)02,

0-33 i ; ; ;
theory>°~*3They indicated that this method provides slightly where o; designates hard-sphere diameter for component

better density profiles compared with that developed by Ser . .
gura, Chapman, and Shulfh, In Eq. (1), u,z represents the association potential between a

. . bonding sitea on a spherical particle and a bondin e
In this work, we report an extension of the fundamental- g “« P P g

: ; 14 i
measure theoryFMT) of Rosenfeld for hard spher¥és®to Lrgt?oﬁ Slcﬁirriirgl if here. Following Segueaal,™ the asso
nonuniform associating fluids. The FMT gives the most ac-

curate descriptions of the structural and thermodynamic —&, I15<rc,0,1<0c,05<6c,
prope_:rties of_inhomogeneous haro_l-sphere fluids. Unlike most  Yap(M12,@1,@;) = 0, otherwise,

density-functional theories for inhomogeneous systems, 3)
FMT is able to predict the structure of homogeneous bulk

fluid rather than to use it as an input. It is assumed that th om the center of moleculieto the siteX and the vector
excess intrinsic Helmhotz energy can be expressed in th . . - 12-
9y b s given in Refs. 14 and 25, only associations betw&eén

form of weighted-density approximation with the weight . )
functions taking into account the geometric feature of aBC’ AD, andBD sites are allowed and all the bonding ener-

spherical particle. The local Helmholtz free energy is deriveogIeS are assumed to be identical. The radial limit of associa-

following the scaled-particle theory. The density—independen%orl |257§et tor¢=0.525(1 + 075)/2 and the angular limit is
C_ .

weight functions provide the fundamental measure of a : . .
spherical particle: two scalar functions representing the av- When the hard s_ph_eres are in contact with a single hard
I, the wall potential is

erages over particle volume and surface, and a surface vectdP
function representing the density changes across the particle {oo, z<0,

2

herefy; (X=a,B;i=1,2) is the angle made by the vector

surface. Because these weight functions are independent of ¥(2)= (4)
density distributions, the weighted densities in FMT are

more convenient to calculate than those in most non|ocd{VhereZ is the distance from the center of a hard sphere to the
density-functional theories. Besides, FMT can be unambiguwall. When hard spheres are confined in a slitlike hard pore,
ously extended to mixtures. To extend FMT to associatinghe potential due to the confinement is

fluids, we use Wertheim'’s first-order perturbation theory; but

unlike in a typical local-density approximation, the intrinsic \P(z)::
Helmholtz energy due to association depends on scalar as

well as on vector-weighted densities. In this work the ex-whereH represents the pore width.

tended FMT has been used to describe the density profiles of

associating hard spheres and mixtures of neutral and asso@: pensity-functional theory

ating hard spheres near a hard wall or in hard slit pores. ) ) ) )
Because we are primarily concerned with the properties of ~ The essential task of a density-functional theory for in-
the fluid phases, the original formula of FMT is used in thishomogeneous fluids is to derive an analytical expression for

work but inclusion of recent developments of FMT is the grand potentiaf), or equivalently, the intrinsic Helm-
straightforward. holtz energyF, as a functional of density distributions. For a

binary mixture at given temperatur€, total volumeV,
chemical potentiak;, and external potential;(r) for each
Il. THEORY component, the grand potential is minimized at equilibrium
A. Model and the equilibrium density distribution (r) satisfies

0, otherwise,

o, z=<0 or z=H,

®)

0, otherwise,

We consider a binary mixture of neutral and associating o0 _
hard spheres near a hard wall or confined between two par- Jdp;(r)

6
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The grand potential and the intrinsic Helmholtz energy are Ny; Nyi Nyoi
related by noi—m, nli—m, n\/li—m. (15

2
Q=F[p1(r),pa(r)]+ >, fdfpi(f)[‘l’i(f)—,ui]- (7)  In Egs.(12—(19), R; is the hard sphere radiu®,(r) is the
i=1 Heaviside step function, ang{r) is the Dirac delta function.
Once we have an expression for the intrinsic Helmholtz enfFor O<a<3, thea\iv?)e)llghted densities,(r) have the units of
ergy, solution to Eq(6) gives the equilibrium density pro- [na]=(volume)‘ . The vector-weighted density,, has
files and subsequently, relevant thermodynamic properties.the Same units as,(r) andny, has the same units as(r).

To take into account the nonideality arising from inter- ~ From the scaled-particle differential equation, Rosenfeld
molecular interactions, the intrinsic Helmholtz energy is of-derived the following excess Helmholtz energy density for
ten expressed as contributions from an ideal-gas term and &iphuniform hard spherés
excess term due to intermolecular interactions

PN, (r}=0T+ D+l (16)

Flpa(r),p2(r)1=Fidl p1(r),p2(r) I+ Fed p1(r),p2(r)].  (8)
. Lo . where
The ideal-gas contribution is given by the exact expression
2 ®f°=—nyIn(1-ny), (17)
Filpa(r).p2(r)]1=keT 2, f drpi(D{In(pi(NAD) =1}, (9)
=1 hs. M1N2—Ny1- Ny
where \;=h/(27m;kgT)¥? represents the thermal wave- 27 (1-ng
length withkg standing for the Boltzmann constant. For most
nonideal systems, the excess intrinsic Helmholtz energy can he IN3—nynyp Ny,
only be evaluated approximately. 3T 8a(1-ng? (19
As in a typical perturbation approach, we assume that
the excess intrinsic Helmholtz energy for a system of inhoin Egs. (18) and (19), ny; and ny, are vectors, ana,,
mogeneous associating hard spheres consists of two termsy,,, is a dot product. In the limit of a homogeneous fluid,
the first from the hard-sphere reference system and the sethe two vector-weighted densitie®,; and ny, vanish, and

(18

ond from perturbation the Helmholtz energy becomes identical to that derived from
the Percus—Yevick theory.
Fex= kBTj dr{®" n,(r)]+®3%n,(r)]}, (10 Equation(17) is exact in the limit of one-dimensional

hard-rod fluid®® The first and second terms on the right-hand
where ®[n,(r)] stands for the excess Helmholtz energyside of Eq.(16) give a reasonable approximation for the
density, and the superscripts “hs” and “assoc” denote, re-Helmholtz energy of hard disks. Corrections to the third term
spectively, hard-sphere repulsion and association. This den the right side of Eq(16) have been proposed to improve
composition of Helmhotz energy follows the spirit of the the performance of the fundamental-measure theory in re-
interparticle potential as given in E¢l). duced dimensionality?*° In this work we use the original
expression because the focus here is on the equilibrium prop-
erties of nonuniform fluids, for which the corrections have
only marginal effects.

The fundamental-measure theory of Rosenfeld provides In the limit of a uniform fluid, the density distribution

an expression for the excess intrinsic Helmholtz energy duér each component becomes the corresponding bulk density,
to hard-sphere interactions. In this theory, the excess intrinsig;(r)=py, ;, and the scalar-weighted densities coincide with
Helmholtz energy density is represented as a function of sixhe variables of the scaled-particle theory for bulk hard

1. Reference hard-sphere system

scalar and vector weighted densitieg(r),>* spheres
_ _ _ 2
Na(r)=2 ng,i(N=2 fpi(r')w§“><r—r'>dr', (11) Moi=Pbin Mi=Rippi. N2i=47Rip,,
| I
n3i:47TRi3pb,i/3. (20)

wherea=0, 1, 2, 3V1, V2. Among the six weight functions

wi(“)(r), three of them characterize the geometry of a spheri-
cal particle: two scalar functions are related to volume and?. Perturbation
surface area, and a vector function is related to the gradient

. For a bulk associating fluid, the Helmholtz energy den-
across a sphere, i.e.,

sity due to associations is given by

wiF(r)=0(R—r), (12 o
w2(r)=8(Ri—r), (13 ‘I’assowzzi Min,i('”Xﬂ’i—%Jré : (21)
w2 =(rlr)8(Ri—r). (14)

whereM; is the number of association sites per molecule of
The other three weight functions are proportional to thaspeciesi,)(z" is the fraction of molecules of componantot
above geometric functions: bonded at sité\. In Eq. (21), x> is calculated from
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i 1 1 6Fefpa(r),pa(r)]
b,i _ (1) €
= — 22 —
Xa 1+Ejpbj2aXb’JAl,J ( ) Ci [r pl(r) pZ(r)] k 5p|(r)
where A" =47Kg[**(ay;)f 5, K is a constant reflecting ‘Dhs+q)asso‘5
the volume available for bonding of the two sites on mol- an,
ecules 1 and Zf(,B—exp(s/kBT) 1 represents the Mayer (@
function, andgf**(cy;) is contact value of the hard-sphere Xwi¥(r=r"). (29
pair correlation function: At equilibrium, the chemical potentials of all species remain
1 300 & constant. When the confined fluid is in equilibrium with a
hsb J . .
+ bulk phase, the chemical potential can be calculated from
glj (UI]) 1_§3 O_I+0_J (1_53)2 p ; ph
2 g2 i =KeT In(pp i N7) + pf™ " p 255 (30
gi0;
U;;) (1_% (23)  where the first term on the right-hand side comes from the
ol 3 idea-gas reference state, the hard-sphere efhi®is from
with  &,=(7/6)22_p;e™, m=0,1,2,3, and oij=(o;  the scaled-particle theofy,and the association chemical po-
+ a,)/z FoIIowmg Seguraet al,'* 2 we use K=1.4849 tential is calculated from Wertheim’s thermodynamic pertur-
% 10~*0? in the following calculations. bation theory. *°

The excess Helmholtz energy due to association is taken
into account using the weighted-density approximation. To
extend Eq.(21) to inhomogeneous systems, intuitively we lll. RESULTS AND DISCUSSION
may replacets, &, andpy; in Egs.(21)—(23) with, respec-
tively, ng, #n, andny as suggested by E¢20). This ap-
proach includes only the scalar-weighted densities in calcur
lating the Helmholtz energy. In order to take into account the
vector-weighted densities, we introduce two proportlonal
factors {i=1—nyy;- nvz,/n2I and {=1-—ny;,- nVZ/nz, to
“correct” the weighted densitieslol, n,, andn3. In other
words, we replacgs, &, &, andpy; in Eqs. (2-(23) Pl V(@) =pSD T+ pl(1-1). (31)
with ng, #n,¢, 36n2§ andng;¢;, respectively. In this case
the Helmholtz energy density of association becomes

We apply the Picard-type iterative method to solve the
Euler—Lagrange equatidiEq. (28)]. For hard spheres near a
hard wall or within slit pores, the density distributions vary
only in one direction. To avoid divergence, it is necessary to
mix the new and old density profiles in certain proportions
during the iteration process, i.e.,

' The mixing parametef varies from 0.01 at high densities

(py=0.9) to close to unity at low densities. The exact value

<|>( N 1 is obtained by trial and error method.
<Dass°%na)=2 Noi &iM;| In & (r)— +§ , (29 The weighted densities and the integrals in E29) are
=1 evaluated by a trapezoidal rule with a mesh width equal to

0.01s for a satisfactory numerical accuracy. The iterations
terminate when the maximum difference between two subse-
quent density profiles is smaller than 70 Once the density

wherex(')(r) is the fraction of moleculesat positionr not
bonded at sité\, and it is obtained from

((r) = 1 (25 profiles are obtained, the fractions of moleculed position
XA 1+3n;; 2 x P (NAT(r)* z not bonded at sitex are calculated frofif
where xV(2)=| 1+ 47Kg" (o7 ,pp.)
Alj(r):477-Kg|l’}s(0-lj 1na)fa,81 (26) 1+7 -1
X DizYpi(z)dz' | 32
N S fﬁlﬂxa (2)pi(2") (32
ijLTijNa) = 2
LA 1-n3 oitoj2(1-n,) where g"{o;,pp;) is the contact value of the hard-sphere
o0 n%g pair correlation function at the bulk densipy, ;. With the
J 3. (27 assumptions that all four sites are equivalent regardless of
O'|+O'] 18(1_n3)

the distance from the hard wall, the fraction of monomers
Once we have an expression for the intrinsic HelmholtzCan be approximated by

energy, mlnlml_zat_lon _of the grand potential with respect to XO(Z):Xi(Z)- (33)
the density distributiongEq. (6)] leads to the Euler—
Lagrange equation The surface excess for componérdt the hard wall is

. related to the density profile by
pi(N) =i *exp{ciV[r,pa(r).pa(r)]

2_ |~ 3. 3
i — ¢i(0)1/(kgT)}, (28) Liof= fo [pi(2)07—ppioi]dz (34
whereci(l)[r,pl(r),pz(r)] is the one-particle direct correla- where p;(z)o? is the local reduced number density and
tion function, obtained from pb.i(2) o? is the reduced number density in the bulk.
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A Simulation

6F This work
....... Theory by Segura et al.

zlo

FIG. 1. Density profiles of associating hard spheres near a hard wall from
the theory by Seguret al. (Ref. 149 (dash line, from the extended FMT
(solid line), and from simulation(open triangles Here 1T* =5, pf
=0.9036.

A. An associating fluid near a hard wall

The following comparison between the density-
functional theory and simulation results is based on the same
set of parameters for intermolecular potentials and bulk den-
sities. No adjustable parameter is used. In all these calcula-
tions, the particles have the same diameteThe definition

of the reduced temperature and reduced density are given b%/r’r*:

3

respectively,T* =kgT/e and p* =po®, wheree is the site

Y.-X. Yu and J. Wu

(a)

2 3 4
1.8
sk (©)
<ok
0.9 PO At At b bbbt bty
0.6F
0.3 L 1
0 2 3 4
zlo

FIG. 3. Same as Fig. 2 bu®) pj=0.4874, 1T*=3; (b) p}=0.4914,
5; and(c) pj =0.5239, 1T* =7.

bonding energy.

Figure 1 shows the density profile of associating hard=0.9036 near a hard wall predicted from the extended

spheres at temperature Tt/=5 and bulk densityp}

&b,

Yp,

1.5
1.2
0.9

0.3 | | I

-y o,

0 1 2 3
zlo

FIG. 2. Density profiles of associating hard spheres against a hardayall
pr=0.1977, 1T*=3; (b) py=0.1994, 1T*=5; and (c) pf=0.2112,
1/T* =7. The open triangles represent the simulation res@ef. 19, the
solid lines represent the calculated results from the extended FMT.

fundamental-measure theory. Also shown in Fig. 1 are the
corresponding results from Monte Carlo simulation and from
the density-functional theory proposed by Segetaal*
Figure 1 does not include the results from the inhomoge-
neous version of Wertheim’s theory because it gives much
too high peaks in the density profiles. In this example, both
density-functional theories agree reasonably well with Monte
Carlo simulation results; however, the theory present here
has the advantage of numerical simplicity because the weight
functions are independent of density.

Figures 2—5 compare the density distributions of associ-
ating hard spheres near a hard wall predicted from the ex-
tended fundamental-measure theory with those from molecu-
lar simulations at four average reduced densitjgs=0.2,

0.5, 0.75, and 0.942, and for each densities, three reduced
bonding energiese/kgT=3, 5, and 7. In most cases the
present theory provides satisfactory density profiles except
near the freezing point, where it slightly overestimates the
contact values. Similar discrepancy has been observed when
FMT is applied to hard-sphere fluid near a hard wall.

Figure 2 indicates that at a low overall average density,
the associating hard spheres are adsorbed to a hard wall
when the bonding is weak but become depleted from the
wall when the bonding energy is sufficiently high. Adsorp-
tion at small association energy is due to the excluded vol-
ume effect as occurred in a neutral hard-sphere system. At
high association energy, the surface effects extended far from
the wall, which suggests a long-range solvation force. In this
case, the present theory slightly overestimates the density
distributions in the depletion zone.
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FIG. 5. Same as Fig. 2 fofa) pj =0.9158, 1T*=3; (b) p} =0.9036,
zlo UT*=5; and(c) pj =0.9085, 1T*=7.

FIG. 4. Same as Fig. 2 fofa) pj =0.7191, 1T*=3; (b) p}=0.7257,

*=5: * = * = . . . .
UT*=5; and(c) p; =0.7366, 11" =7. wall has little effect on intermolecular bonding agg(z) is

almost constant.
Figure 7 shows calculated and simulated adsorption iso-

L . _ . therms of the four-site associating hard-sphere fluid near a
As density increases, the density profiles shift toward thehard wall at 1T* =0, 5, and 7. All three adsorption iso-

Walgf as showE n Flgs. 3 an(IjI 4. cljt IS |gt§rest.|ng to ncl)te thattherms correspond to supercritical conditioftee corre-
in Fig. 3(c), where the overall reduced density equal to 0.5, 4ing equation of state for bulk fluids gives the critical

and 1T* =7, associating hard spheres are slightly desorbe mperature:/ksT.= 1/T* =7.76. At a low bonding energy,

from the hard wall and, due to the cancellation of associatioqhe surface excess increases monotonically with the bulk

and excluded volume effects, the density distribution appearg

ensity. However, when the bonding energy is sufficientl
uniform. The simulation data in Fig(& are from Patrykie- Y g g9y y

jew et al2’ high, the surface excess first decreases with the bulk density
Figure 5 presents the density distributions of associating
hard spheres when the bulk density is close to the hard- 1.0

sphere freezing point. While the extended FMT theory pre- Oig%mm

dicts accurate peak positions, it gives slightly too high con-

i . 0.8
tact values. The discrepancy probably arises from the
. . . 0.7F Q

approximations used in the FMT. a0 aOOan O e ol

The local fraction of unbonded associating hard spheres 06F
is calculated from Eq(32). Figure 6 gives the monomer = 0sf
fraction xo(z) as a function of the distance from the hard 0.4%%1_\

[ A

wall for the systems as given in Fig. 2. Monomer fraction 0.3
falls away from the wall because the presence of the wall 0.2
blocks some bonding sites. While in general the theory [
agrees well with simulation results, Fig. 6 indicates that the . . . . .
discrepancy increases with the association energy. All the 0'%0 0.5 1.0 15 2.0 2.5 30
monomer profiles exhibit a change in slopezato. This
cusp is related to the integral in E@2) and the approxima-
fon that banding occurs only at hard-sphere confaSpe- 12,0 Lo L 1a b e
lelca”y’ if a molecule sits a'Z<(_T’ It_s assoqatlon with a represenf the ex:/ended FMpT results. TltJ1e curves, fr;)m top to bottom, are for
second molecule on the wall side is restricted by the ex;x-0.1977, 17*=3 (square} pf=0.1994, 1T* =5 (circles; and p}
cluded volume effect; while far from the walkt o), the  =0.2112, 1T* =7 (triangles.

AOANN AAAADAAA

olo
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0.4 2.5
(a)
0.3
0.2
(9]
~
0.1
0.0
0.15
-0.1 !
L I 1 L 012
0.0 0.2 0.4 0.6 0.8 1.0 o
P % 009
FIG. 7. Adsorption isotherms of the four-site associating hard sphere fluid 0.06
near a hard wall. The symbols represent the simulation @& 14 and i
solid lines represent the results of the extended FMT. The curves, from top 0.03 L L L !
to bottom, are for * =0 (circles, 1/T* =5 (squares and 1T* =7 (tri- 2 4 0 8 10
angles.
zlo

FIG. 8. A binary associating fluid mixturépy; =0.1996, pj; ,=0.1014,
[due to the depletion effect as shown in Fi¢c)2, exhibits @  1/T*=7) near a hard wall(a) the ratio of hard spheres to associating
minimum, and finally rises as the density is further increasedspheres versus distance from the wéi); the reduced density of associating
The desorption to adsorption transition of associating harapheres versus distance from the wall. The symbols represent Monte Carlo
. . simulation resultgRef. 25 and the solid line represents the result of the
spheres can be explained by the competition betweepended FMT.
excluded-volume and bonding: the excluded volume favors

accumulation of hard spheres near the wall but because the

wall is neutral, bonding between hard spheres are restricteghoy increases with the distance. Figurés &nd 8b) indi-

close to the wall. At low densities and high bonding energiescate while the extended fundamental-measure theory catches
the association effect prevails and the density profile showg,e essential details, it overestimates slightly the local den-
depletion, whereas at conditions of high density and low aSsity near the wall.

sociation energy, in contrast, the density profile is dominated Figure 9 gives the density profiles at the same reduced

by the excluded-volume effect, leading to adsorption. Th&emperature as that given in Fig. 8 but at higher reduced
adsorption isotherms predicted by the density-functional

theory are in good agreement with results from molecular
simulation at both high and low association energies.

B. Binary mixtures of associating fluids near a hard
wall

2)lp (2)

P

We also investigated the density profiles of binary mix-
tures of neutral and associating hard spheres near a hard
wall. For comparison with simulation results, all hard
spheres considered here have the same size. Figures 8-10
show the ratios of hard-sphere density to associating sphere
density,p,(2)/pa(2), and the normalized density profiles of
associating spherepgy(z)/py, 5, as functions of the distance
from the wall at several bulk densities and temperatures.
Here p,(z) represents the density distribution of four-site ¥
associating hard sphergs,(z) is the density distribution of
neutral hard spheres, apg , is the bulk density of associ-
ating hard spheres.

Figure 8 compares the density profiles calculated from
the extended fundamental-measure theory with those from
Monte Carlo simulation resufts at pf=0.1996, p}.  FiG. 9. A binary associating fluid mixturés} =0.5134, pf,,=0.3089,
=0.1014, 1T*=7. Both theory and simulation show a 1/T*=7) near a hard wall(a) ratio of hard spheres to associating spheres
depletion of associating particles near the hard wall. As disversus distance from the wallb) reduced density of associating spheres

; ; o : rsus distance from the wall. The symbols represent Monte Carlo simula-
cussed earlier, that depletlon is induced by the reduction O\fﬁn results(Ref. 25, the dashed line represents the result from the theory by

ey . . |
the acceSS|b|I|_ty of the b(_anllng sites. Close _to_ _the haréeguraet al. (Ref. 25, and the solid line represents the result of the ex-
wall the density of associating spheres falls initially andtended FMT.
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FIG. 11. Fraction of unbonded associating hard spheres near a hard wall
in binary mixtures. The symbols represent the simulation ¢aé&d. 25 and

the lines represent the results of the extended FMT. The curves, from top to
bottom, are for p;=0.1996, p},=0.1014, 1T*=7 (squares pj
=0.7173,p; ,=0.3604, 1T* =5 (circles; and pj, =0.5134,p} ,=0.3089,
z/o UT*=7 (triangles.

FIG. 10. Same as Fig. 8 fgr; =0.7173,py, ,=0.3604, and I7* =5.

tinct density profiles at a fixed temperatufeand chemical
potentialuw. In other words, at vapor-liquid equilibrium, two
sets of density distributions can be found that give the same

densities(py; =0.5134,py; ,=0.3089, 1T* =7). Also shown
in this figure are simulation and calculated results from Se
guraet al®® Figure 9 shows that Segura’s theory underesti->~, . 2
mates the depletion effect and, consequently, the ratio of o nimum grand potential. The average density in the pore
cal densities for hard spheres and associating spheres. Bdtav 'S calculated from
theoretical methods correctly predict the little kink around
z=1o0. In Fig. 9b), the trough near the wall is enhanced in
comparison with that in Fig.(®). Pav_f
Figure 10 presents the ratio of the local densities of hard

spheres and associating spheres as well as the density distri- ) o o
bution of associating spheres near a hard wall pit When the pore width is infinite, the average densities in the

=0.7173,p% ,=0.3604, and T* =5. Both density and tem- pore correspond to those for saturated bulk vapor and liquid

perature here are higher than those in Fig. 9. In this case, tH§125€, i-€-pa,=pp. In this case, the requirement of equal
density profiles are dominated by the excluded-volume effecgrand potential between vapor and liquid phases at constant
so that even associating spheres show adsorption to the walf MPerature, volume, and chemical potential is equivalent to
It is interesting to note that the ratio of local densities of hardthat of equal in pressure because for a bulk fluid, the grand
spheres and the associating spheres shows a maximum at Rpfential is=—PV. . _

intermediate densityFigs. 8a), 9(a), and 1Ga)]. Figures Figure 12 shows the _vapor—llqw_d <_:oeX|stence curves for
8—10 indicate that the extended fundamental-measure theol)e Pulk and for the confined associating hard spheres at the

predicts the local compositions and density profiles in favorP0re Width equal tid =100 and 2Gr. As for confined non-
able agreement with those from molecular simulations. polar fluids, the coexistence curves in the slit pore are nar-
Figure 11 shows the fraction of unbonded associatin owed and the critical temperatures are depressed relative to

hard spheres as a function of the distance from the hard waii@t for the bulk case. The density for the liquid side of the
for the three binary mixtures considered in Figs. 8—10. Th&oexistence curve is considerably lower than that for the bulk

extended fundamental measure theory works best for thg€cause the depletion of associating spheres from the hard
case corresponding taf =0.7173,p% ,=0.3604, and T walls leads to a low value of the average density. The insert
—5 while it underestimates the rﬁ?)nomer profile for thePlot in Fig. 12 magnifies the vapor side of the coexistence

other two cases. In all cases the local density of monomerSUrves. The condensation density of confined associating
exhibits a change in slope a& o hard spheres within a hard slit pore could be higher or lower

than that corresponding to the bulk phase, depending on the
system temperature. The confinement causes a small de-
crease in the critical density. The entire phase diagram for

We now apply the extended fundamental-measure theorsissociating fluid is shifted toward lower temperatures and
to investigate the phase behavior of the associating harlbwer densities in comparison with the corresponding bulk
spheres in slitlike hard pores. For the vapor—liquid equilib-phase diagram. Simulation results are not presented in Fig.
rium of confined fluids, the coexistence point is found by thel2 because we are not aware of any data for the vapor-liquid
equality of the grand canonical potentidlsfor the two dis-  coexistence of confined associating fluids.

OHp(Z) dz/H. (35

C. Capillary condensation in a slitlike pore
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0.13 sity profiles are dramatically different from those for con-
fined nonpolar fluids where strong oscillation in density dis-
tributions has been observed.

0.13 4

0.12 IV. CONCLUSIONS

A new density-functional theory is presented to describe
the behavior of associating hard spheres near a hard wall or
within hard slitlike pores based on the fundamental-measure
theory in conjunction with Wertheim’'s thermodynamic per-
turbation theory. Extensive comparison with Monte Carlo
simulation results for the density profiles, the fraction of
monomers, and adsorption isotherms of associating hard-

sphere fluids near a hard wall indicates that the current
0.00 0.03 0.06 \C . . . . .
‘ . . , , theory is fairly accurate except near freezing where it slightly
006 01 0z 03 04 05 06 overestimates the contact values. As observed in Monte
Pay” Carlo simulations, the calculations presented here confirm
FIG. 12. Phase diagrams for a four-site associating hard-sphere fluid in buIF(hat aS_SOCIatlon has significant effect on the adsorption/
(solid line$ and in slitlike pores of different widtkiH =100, dashed lines ~desorption of molecules near a hard-sphere surface. The
and 20y, dotted lines large depletion zone of associating hard spheres near a hard
wall suggests that the solvation force in an associating fluid
could be long ranged.

Figure 13 shows the density profiles of the saturated va- We also calculated the vapor—liquid coexistences of con-
por and liquid phases at two pore widths given in Fig. 12.fined associating hard spheres in hard slit pores. In general,
Here the reduced density of the liquid phase is about 0.3he confinement depresses the two-phase region, as observed
close to that given in Fig.(2). These relatively smooth den- in inhomogeneous nonpolar fluids. The confinement has a

larger effect on the liquid side of the coexistence line than
that on the vapor side, probably due to the depletion of as-

0.12 {

T*

0.11

0.1 {

0.10

sociating molecules from the hard surface. On the vapor side,
0.30 the condensation density of confined associating hard
0.25 spheres within a hard slit pore could be higher or lower than
’ that corresponding to the bulk phase, depending on tempera-
0.20 ture. We found that the density profiles of coexisting vapor
;3 and liquid phases are very different from those for confined
QU 0.15 nonpolar systems.
I For one-component associating hard spheres at low den-
0.10 sities, this new density-functional theory has similar accu-
0.05 [ racy compared with the theory by Seguraal;**% but at
.’ high densities and for mixtures, it gives better results. Be-
0.00 cause the weight functions used here are independent of den-
0 sity, the present density-functional theory is computationally
more efficient than other nonlocal weighted density methods.
030 Moreover, the present theory can be directly applied to mix-
1 tures of associating fluids, including those with different
0.25 sizes and those containing chain molecules.
020
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