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The structures of nonuniform binary hard-sphere mixtures and the correlation functions of uniform
ternary hard-sphere mixtures were studied using a modified fundamental-measure theory based on
the weight functions of Rosenfeld@Rosenfeld, Phys. Rev. Lett.63, 980 ~1989!# and
Boublik-Mansoori-Carnahan-Starling-Leland equation of state@Boublik, J. Chem. Phys.53, 471
~1970!; Mansooriet al., J. Chem. Phys.54, 1523~1971!#. The theoretical predictions agreed very
well with the molecular simulations for the overall density profiles, the local compositions, and the
radial distribution functions of uniform as well as inhomogeneous hard-sphere mixtures. The density
functional theory was further extended to represent the structure of a polydisperse hard-sphere fluid
near a hard wall. Excellent agreement was also achieved between theory and Monte Carlo
simulations. The density functional theory predicted oscillatory size segregations near a hard wall
for a polydisperse hard-sphere fluid of a uniform size distribution. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1763142#

I. INTRODUCTION

Hard-sphere~HS! model plays a central role in studying
the microscopic structures of soft condensed materials using
statistical mechanics. It provides not only a good representa-
tion of colloidal dispersions1 where the range of interparticle
attraction is typically much smaller than the particle size but
also an excellent reference for studying the properties of
simple liquids where the structure is predominately deter-
mined by the short-ranged repulsion.2 Conventionally the
correlation functions of a uniform hard-sphere fluid are rep-
resented by the Percus-Yevick~PY! integral-equation theory3

while various density functional theories~DFT! ~Ref. 4! have
been proposed to represent the structures of inhomogeneous
hard spheres. Both approaches are highly accurate for one-
component hard-sphere systems and multicomponent mix-
tures. However, their applications for predicting the struc-
tures of polydisperse hard spheres as of interest for many
colloidal applications are more challenging.5,6 The integral-
equation approach has been applied to predicting the struc-
ture of a uniform polydisperse hard-sphere fluid7 and the
phase diagram of polydisperse hard-sphere mixtures.8 A
similar approach was implemented to predict the structure of
a polydisperse fluid near a hard wall using a singlet-type
integral-equation theory.9 DFT has also been employed to
study the structures of nonuniform multicomponent

mixtures10,11 and polydisperse hard spheres.5,12 Using the
test-particle method, DFT can also be used to predict the
structures of hard-sphere mixtures or polydisperse hard
spheres at uniform conditions.11,13,14

The central task of a DFT approach is to construct a
reasonably accurate Helmholtz energy functional for the sys-
tem under consideration. This functional is usually con-
structed using known structural or thermodynamic informa-
tion for the corresponding bulk fluids. Two common
approaches have been used to develop the approximate
Helmholtz functionals.15 One is based on the functional per-
turbation expansion with respect to a reference fluid16 and
the other follows the so-called weighted-density approxima-
tion ~WDA!. Many versions exist for both approaches.17–21

Early applications of DFT for hard spheres are primarily
based on WDA for pure inhomogeneous fluids; substantial
efforts had been made to extend these approaches to multi-
component or polydisperse mixtures. For example, Tan
et al.22 simplified Tarazona’s DFT~Ref. 17! and developed a
semiempirical free-energy functional for an inhomogeneous
binary hard-sphere mixture. Denton and Ashcroft23 general-
ized the WDA of Curtin and Ashcroft18 and applied it to the
structure of binary HS mixture near a wall. Kimet al.24 pre-
sented a hybrid WDA for nonuniform mixtures. Patra25 ap-
plied the method of decoupling of the weight function for
mixtures. To avoid time-consuming calculations, most DFT
for hard-sphere mixtures adopted computationally simple
versions of WDA and subsequently, less accurate density and
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concentration profiles were obtained. Using the second-order
direct correlation function and the bridge function of the bulk
fluid mixture as an input, Patra and Ghosh10,11 recently pro-
posed a self-consistent DFT and applied it to studying the
structures of binary and ternary hard-sphere mixtures. Imple-
mentation of this DFT is coupled with the solution of the
Ornstein-Zernike~OZ! integral equation using the thermody-
namically consistent Rogers-Young closure.26

The fundamental measure theory~FMT! originally pro-
posed by Rosenfeld20 and a simplified version proposed by
Kierlik and Rosinberg21 distinguish from most other DFTs of
hard-sphere fluids because they are directly applicable to
multicomponent systems.27 FMT assumes that the excess
Helmholtz energy functional can be expressed in terms of the
weighted densities that take into account the geometric fea-
tures of a spherical particle. Because the weight functions are
independent of density distributions, FMT is numerically
more convenient than most other WDA. FMT has been pre-
viously extended to studying the structure of a polydisperse
fluid in the presence of a hard wall5,12 and in contact with a
semipermeable membrane.28 However, in the original FMT,
the Helmholtz energy functional is based on the PY approxi-
mation and it overestimates the contact values of density
distributions. To overcome this disadvantage, Yu and Wu,13

and independently Rothet al.29 proposed a modified version
of FMT using the Boublik-Mansoori-Carnahan-Starling-
Leland ~BMCSL! ~Ref. 30! equation of state as the input.
The modified FMT improves both density distributions and
the adsorption isotherms of HS near a hard wall13 or in
microchannels,31 especially at high packing densities. In this
work, we apply the modified FMT to studying the structures
of binary HS mixtures near a planar hard surface as well as
the radial distribution functions of uniform ternary HS mix-
tures. In addition, we extend the modified FMT to inhomo-
geneous polydisperse HS fluids.

The rest of this paper is organized as follows. In Sec. II
we briefly present the modified FMT for multicomponent
and polydisperse HS systems. The results for the density and
concentration profiles, radial distribution functions, and local
size segregation will be presented and discussed in Sec. III.
Some conclusions will be made in Sec. IV.

II. DENSITY FUNCTIONAL THEORY „DFT…

A. DFT for multicomponent systems

We consider anN-component mixture of hard spheres at
given temperatureT, total volumeV, chemical potentialm i ,
and external potentialc i(r ) ( i 51,2,...,N). The grand poten-
tial V is related to the Helmholtz free-energy functional
through a Legendre transform

V@$r i~r !%#5F@$r i~r !%#1(
i 51

N E drr i~r !@c i~r !2m i #,

~1!

where$r i(r )% is a set of density distributions. The Helmholtz
free-energy functional can be decomposed into ideal-gas and
excess parts. The ideal-gas part is known exactly,

F id5kBT(
i 51

N E drr i~r !@ ln~r i~r !l i !21#, ~2!

where l i5(h2/2pmikBT)1/2 is the thermal wavelength of
componenti and kB is the Boltzmann constant. As in the
original fundamental measure theory, the excess part of
Helmholtz free-energy functional is assumed to be

Fex5kBTE Fhs@na~r !#dr , ~3!

where Fhs@na(r )# is the reduced excess Helmholtz free-
energy density. The weight densityna(r ) is defined as

na~r !5(
i 51

N E r i~r 8!w(a)~ ur 82r u,s i !, ~4!

wheres i is the diameter of componenti anda (50, 1, 2, 3,
V1, andV2) denote the index of six weight functions given
by

w(3)~r ,s!5u~s/22r !, ~5!

w(2)~r ,s!5d~s/22r !, ~6!

w(0)~r ,s!5w(2)~r ,s!/ps2, ~7!

w(1)~r ,s!5w(2)~r ,s!/2ps, ~8!

w(V2)~r ,s!5~r /r !d~s/22r !, ~9!

w(V1)~r ,s!5w(V2)~r ,s!/2ps, ~10!

whered(r ) is the Dirac delta function andu(r ) is the Heavi-
side step function.

As proposed by Yu and Wu,13 the HS Helmholtz free-
energy density can be expressed in terms of contributions
from scalar weighted densities (S) and vector weighted den-
sities (V)

Fhs@na#5Fhs(S)@na#1Fhs(V)@na#. ~11!

The scalar part according to the modified FMT~Ref. 13! is
given by

Fhs(S)@na~r !#52n0 ln~12n3!1
n1n2

12n3
1

n2
3 ln~12n3!

36pn3
2

1
n2

3

36pn3~12n3!2 ~12!

and the vector part by

Fhs(V)@na~r !#52
nV1•nV2

12n3
2

n2nV2•nV2

12pn3
2 ln~12n3!

2
n2nV2•nV2

12pn3~12n3!2 . ~13!

In the limit of a bulk fluid, the two vector weighted densities
nV1 and nV2 vanish, and the Helmholtz free-energy density
Fhs becomes identical to that from the BMCSL equation of
state.30 Although some recent modifications are known to
give a better description for the solid phase, these
modifications32 would not be more accurate for the fluid
phase.
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Given the fixed external potentialc i(r ) and the excess
Helmholtz energy functionalFex, the equilibrium density
profile r i(r ) can be obtained by solving the coupled integral
equations that are derived from the minimization of the
grand potential functionalV with respect tor i(r ), i.e.,

r i~r !5r i
b expH bm i

ex2b(
a

E ]F

]na
w(a)~ ur 82r u,s i !dr 8

2bc i~r !J ~ i 51,2,...,N!, ~14!

where b51/kBT, r i
b and m i

ex are the bulk density and the
residue chemical potential of componenti , respectively. For
the bulk fluid, the residue chemical potential is obtained
from the BMCSL equation of state. Equation~14! can be
solved numerically using the Picard-type iterative method
where the weighted densities and integrals are evaluated us-
ing a trapezoidal rule. To avoid divergence, it is necessary to
mix the new and old density profiles in certain proportions
during the iteration process, i.e.,

r in
( i )~r !5rout

( i 21)~r ! f 1r in
( i 21)~r !~12 f !, ~15!

where f is the mixing parameter obtained by trial and error
method. We find that a mesh of 0.01s1 yields satisfactory
numerical accuracy~maximum difference of density profiles
between two iteration isDr i5131025). The time required
to solve Eq.~14! depends on the diameter ratios, initial val-
ues of density profiles, and mixing parameter. For example,
when we compute the density profiles of a binary hard-
sphere mixture (s2 /s153, x1

b50.2856, andh50.656) near
a hard wall on a PC~with CPU Athlon XP 1800, System
memory 256MB DDR SBRAM!, 4.25 min is required in the
condition of f 50.03 ~in the first three iterationsf
50.00008) and using bulk densities as initial values of den-
sity profiles. For ternary and polydisperse systems, more
computation time is needed.

B. Inhomogeneous polydisperse system

The structure of an inhomogeneous polydisperse HS
fluid can be specified by the local number density profile,
r(r ,s), of each species with the diameters. In the bulk
limit, the system is characterized by the particle size distri-
bution given by a normalized probability functionf (s). The
bulk density of particle with the diameters is expressed as

rb~s!5r0
bf ~s!. ~16!

The weighted densities for the inhomogeneous polydisperse
fluid can be simply generalized from Eq.~4!

na~r !5E dsdr 8r~r 8!w(a)~ ur 82r u,s!, ~17!

wherew(a)(ur 82r u,s) is given in Eqs.~5!–~10!. With these
descriptions, the grand potential becomes

V5kBTE dsdrr~r ,s!$ ln@l3~s!r~r ,s!#21%

1kBTE drFhs@na~r !#1E dsdr @c~r ,s!

2m~s!#r~r ,s!, ~18!

wherem~s! andl~s! are, respectively, the chemical potential
and the thermal wavelength of species with the diameters.
Minimization of Eq.~18! leads to the Euler-Lagrange equa-
tion for the inhomogeneous polydisperse fluid,

r~r ,s!5r0
bf ~s!expFmex~s!2bc~r ,s!

2(
a

E dr 8
]Fhs

]na
w(a)~ ur 82r u,s!G , ~19!

where mex(s) is the residue chemical potential of species
with the diameters in bulk limit. Both the trapezoidal rule
and the Gauss quadrature method, as proposed by Pizio
et al.,12 can be employed to evaluate the weighted densities
and the integral in Eq.~19!, but the latter is more efficient. If
the external potentialc(r ,s) ~such as a hard wall! and the
polydispersity of bulk limit are known in advance, Eqs.
~11!–~13!, ~17!, and~19! are closed and their numerical so-
lution gives the full density profile of nonuniform polydis-
perse hard-sphere fluid.

FIG. 1. ~a! Density profiles and~b! local concentration of a binary hard-
sphere mixture near a hard wall for the diameter ratios2 /s153.0, bulk
molar fractionx1

b50.2856, and bulk packing fractionh50.656. Symbols
are simulation results~Ref. 22! and the solid curves are results from the
modified FMT.
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III. RESULTS AND DISCUSSION

A. Hard-sphere mixtures near a hard wall

We first investigate the structures of binary hard-sphere
mixtures near a flat hard wall. In this case, the external po-
tential acting on each particlei can be expressed as

c i~z!5H ` z,s i /2

0 z.s i /2
, ~20!

wherez is the perpendicular distance from the wall. The bulk
conditions used in the calculations are specified by the ratio
of the hard-sphere diameters, the packing fractionh defined
as

h5
p

6 (
i 51

N

r i
bs i

3 , ~21!

and the mole fractionxi
b . In all our calculations,s1 is se-

lected as the unit length.
Figures 1~a! and 1~b! present, respectively, the density

and mole fraction profiles near a hard wall for a binary HS
mixture of s2 /s153.0, h50.656, andx1

b50.2856. For
comparison, the computer simulation results of Tanet al.22

are also included in both figures. As in a pure HS fluid, the
density profiles oscillate with a periodicity of a hard-sphere
diameters i and approach the corresponding bulk densities
far away from the wall. It shows that the higher the reduced
bulk density is, the larger is the magnitude of oscillation in
the density profile. It can be seen from these figures that the

present DFT accurately predicts the density and mole frac-
tion profiles. Previous DFT investigations also yield good
overall density profiles but the local mole fractions are less
satisfactory.22–25 For a binary HS mixture ats2 /s151.5,
h50.682, andx1

b50.2538, similar results can be found in
Fig. 2. In both cases, surface segregation is observed and
well reproduced by the present DFT.

B. Structures of ternary hard-sphere mixtures

Using Percus’ test-particle method, DFT can be used to
calculate the radial distribution functions of bulk mixtures. If
we fix a spherei and obtain the density profiler j (r ) of
componentj around the fixed particle, the radial distribution
function gji (r ) can be obtained through

gji ~r !5r j~r !/r j
b . ~22!

Equation~22! has been applied to ternary hard-sphere mix-
tures with the diameter ratios ofs2 /s150.6 and s3 /s1

50.3. Figure 3 depicts the predicted radial distribution func-
tions for the ternary system atx15x25x351/3 and h
50.35, along with the Monte Carlo data of Sindelka and
Boublik.33 The agreement between the DFT and the com-
puter simulation is excellent. The contact values of the radial
distribution functions from the present DFT are same as
those from the BMCSL equation of state, indicating the con-
sistency of the DFT. We have performed similar calculations
for other ternary systems by changing the concentration and

FIG. 2. The same as Fig. 1 but for the diameter ratios2 /s151.5, bulk
molar fractionx1

b50.2538, and bulk packing fractionh50.682.

FIG. 3. Radial distribution functions of a ternary hard-sphere mixture with
s2 /s150.6,s3 /s150.3,x15x25x351/3, andh50.35. The symbols rep-
resent the results of MC simulation~Ref. 33! and the solid curves are pre-
dicted from the modified FMT. For clarity, curves forg12(r ) andg23(r ), and
for g11(r ) andg22(r ) are shifted upward by 0.25 and 0.5, respectively.
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the overall packing fraction. The predicted results are shown
in Figs. 4–6, all are in excellent agreement with the simula-
tion data.33 As the reduced density increases, the oscillations
in the radial distribution function profiles magnify, similar to
the distribution of hard spheres near a hard wall.

We have taken an alternative way to calculate the radial
distribution functions from the second direct correlation
functions obtained from the functional derivatives of the ex-
cess Helmholtz energy functional

Ci j
(2)~ ur 92r 8u!52

bd2Fex@$r i~r !%#

dr i~r 9!dr j~r 8!
. ~23!

The total correlation functionshi j (r )5gi j (r )21 are calcu-
lated from the Ornstein-Zernike~OZ! equation via the Fou-
rier transform. However, this route is less accurate than Per-
cus’ test-particle method for the radial distribution functions.
Therefore, only the latter method is used throughout this pa-
per although the present DFT predicts the direct correlation
functions more accurately than the original FMT.

C. Polydisperse fluid near a hard wall

We now apply the DFT to polydisperse hard spheres
with a special attention given to the effect of a hard wall on
the fluid structure. The polydispersity may be specified by a
Gaussian, exponential, or a uniform probability distribution
function for the particle size. In this work, we focus on a
uniform distribution functionf (s) within the interval@s1 ,
su],

f ~s!5H 1

s12su
s1,s,su

0 otherwise

, ~24!

and the fluid is in contact with a planar hard wall. The ex-
ternal potential for the particle with a diameters is expressed
as

c~z,s!5H ` z,s/2

0 z>s/2
. ~25!

Figure 7 compares the density profiles of the smallest (s
5s1) and the largest (s5su52s1) particles predicted from
the DFT with that from Monte Carlo simulations at two bulk
densities (r0bs1

350.0908 andr0bs1
350.181). At the fixed

bulk densityr0b , the oscillation in the density profiles be-
comes more pronounced as the particle size increases. The
agreement between the theoretical predictions and the Monte
Carlo simulations is very good, indicating that the present
DFT is capable of predicting the structure of the inhomoge-
neous polydisperse hard spheres with high accuracy. Com-
paring with Fig. 1 of Ref. 12, we find that the present DFT is
slightly more accurate than those used by Pizioet al.12 and
by Pagonabarragaet al.5

A three-dimensional plot of the density profile as a func-
tion of particle diameter and the distance from the hard wall
is shown in Fig. 8, where the bulk condition is same as in
Fig. 7~b!. This plot illustrates that the local density changes
continuously with the diameter of the adsorbed particles. The

FIG. 4. Radial distribution functions of a ternary hard-sphere mixture as in
Fig. 3 but forh50.45.

FIG. 5. Radial distribution functions of a ternary hard-sphere mixture as in
Fig. 3 but forx151/6, x251/3, x351/2, andh50.35.
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contact density of particles shows oscillatory behavior as the
particle size increases. Although here we only considered the
polydisperse fluid systems with uniform size distribution, our
method is feasible to the case with nonlinear distribution of
diameters.

Significant local size segregation was found for the poly-
disperse fluid with uniform size distribution as discussed in
Figs. 7 and 8. Figure 9 depicts the local mole fraction pro-
files, x(z,s)5r(z,s)/*dsr(z,s), for the system with the
size distribution given by Eq.~24! and the bulk density
r0bs1

350.24. It can be clearly seen from Fig. 9 that the den-
sity profile of each species oscillates with a spatial period
close to its own diameter. This behavior is similar to that in
binary and ternary mixtures as discussed earlier. In addition,
strong oscillations in the local concentration profiles are
found for the large and small particles, whereas for the par-
ticles close to the mean size (s51.4s1 ands51.6s1), the
concentration profiles are more uniform. These findings are
qualitatively in coincidence with the predicted results ob-
tained by Pagonabarragaet al.5

IV. CONCLUSIONS

We have applied the modified fundamental measure
theory to inhomogeneous as well as uniform multicomponent
~binary and ternary! hard-sphere mixtures and polydisperse
systems. Extensive comparison with Monte Carlo simulation
results indicates that the modified fundamental measure
theory accurately reproduces the density profiles as well as

the radial distribution functions of hard-sphere mixtures, and
the predicted results are better than the previous versions of
the density functional theory.22–25 The present theory works
successfully not only at high densities but also for highly

FIG. 6. Radial distribution functions of a ternary hard-sphere mixture as in
Fig. 3 but forx151/6, x251/3, x351/2, andh50.4. FIG. 7. Reduced density profiles for particles of diameters5s1 and s

52s1 for polydisperse hard spheres near a hard wall at bulk density~a!
r0bs1

350.0908 and~b! r0bs1
350.181. The symbols represent the results of

MC simulation~Ref. 12! and the solid curves are calculated from the DFT.

FIG. 8. The reduced density distribution of polydisperse hard spheres vs
particle diameter and the perpendicular distance from the wall at the bulk
densityr0bs1

350.181.
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asymmetric hard-sphere mixtures. Furthermore, it is capable
of predicting the structures of hard-sphere fluid confined in
different geometries.31

The present theory predicts the density profiles of poly-
disperse hard-sphere mixtures with uniform distribution of
diameters near a hard wall in excellent agreement with the
Monte Carlo simulation results. It is also feasible to describe
the structure of polydisperse hard-sphere mixture with non-
linear distribution in a broader interval. It shows significant
size segregations for uniformly polydispersed hard spheres
near the wall. The systems considered in this work represent
simple models of colloidal dispersions in the presence of an
impenetrable surface relevant to many practical applications.
These systems can also be used as a reference for developing
perturbation theory to study more complex systems such as
electric double layer,34 associating fluids,35 and polymers36

confined in various geometries. In the future work, we intend
to extend the present theory to polydisperse systems contain-
ing particles with a continuous distribution of other param-
eters such as charge or chemical composition.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China~Project Grant No. 20376037!.

1H. Xu and M. Baus, J. Chem. Phys.118, 5045~2003!.
2J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd ed.
~Academic, London, 1986!.

3J. K. Percus and G. J. Yevick, Phys. Rev.110, 1 ~1958!.
4R. Evans, inFundamentals of Inhomogeneous Fluids, edited by D. Hend-
erson~Dekker, New York, 1992!.

5I. Pagonabarraga, M. E. Cates, and G. J. Ackland, Phys. Rev. Lett.84, 911
~2000!.

6J. L. Lebowitz, Phys. Rev. A133, 895 ~1964!; A. Konig and N. W. Ash-
croft, Phys. Rev. E63, 041203~2001!; M. Yasutomi and M. Ginoza, J.
Phys.: Condens. Matter12, L605 ~2000!; C. Caccamo, G. Pellicane, R.
Ricciari, and G. Faggio,ibid. 12, 2613~2000!; A. Santos, S. B. Yuste, and
M. L. de Haro, J. Chem. Phys.117, 5785~2002!.

7F. Lado, Phys. Rev. E54, 4411~1996!; J. Chem. Phys.108, 6441~1998!;
S. Leroch, G. Kahl, and F. Lado, Phys. Rev. E59, 6937 ~1999!; B.
D’Aguanno and R. Klein,ibid. 46, 7652~1992!.

8J. J. Salacuse and G. Stell, J. Chem. Phys.77, 3714~1982!; J. A. Gualtieri,
J. M. Kincaid, and G. Morrison,ibid. 77, 521 ~1982!; Y. V. Kalyuzhnyi
and G. Kahl,ibid. 119, 7335~2003!.

9P. Bryk, A. Patrykiejew, J. Reszko, and S. Sokolowski, J. Chem. Phys.
111, 6047~1999!.

10C. N. Patra and S. K. Ghosh, J. Chem. Phys.117, 8933~2002!.
11C. N. Patra and S. K. Ghosh, J. Chem. Phys.118, 3668~2003!.
12O. Pizio, A. Patrykiejew, and S. Sokolowski, Mol. Phys.99, 57 ~2001!.
13Y.-X. Yu and J. Z. Wu, J. Chem. Phys.117, 10156~2002!.
14C. N. Patra and S. K. Ghosh, J. Chem. Phys.106, 2762~1997!.
15D. W. Oxtoby, Nature~London! 347, 725 ~1990!.
16T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775~1979!; D. W.

Oxtoby and A. D. J. Haymet, J. Chem. Phys.76, 6262~1982!; T. H. Yoon
and S. C. Kim, Phys. Rev. E58, 4541 ~1998!; N. Choudhury and S. K.
Ghosh, J. Chem. Phys.110, 8628~1999!.

17P. Tarazona, Phys. Rev. A31, 2672 ~1985!; P. Tarazona,ibid. 32, 3148
~1985!.

18W. A. Curtin and N. W. Aschroft, Phys. Rev. A32, 2909~1985!.
19T. F. Meister and D. M. Kroll, Phys. Rev. A31, 4055~1985!; A. R. Denton

and N. W. Aschroft,ibid. 39, 4701~1989!; X. C. Zeng and D. W. Oxtoby,
ibid. 41, 7094~1990!; R. Leidl and H. Wagner, J. Chem. Phys.98, 4142
~1993!.

20Y. Rosenfeld, Phys. Rev. Lett.63, 980 ~1989!.
21E. Kierlik and M. L. Rosinberg, Phys. Rev. A42, 3382~1990!.
22Z. Tan, U. M. B. Marconi, F. van Swol, and K. E. Gubbins, J. Chem. Phys.

90, 3704~1989!.
23A. R. Denton and N. W. Ashcroft, Phys. Rev. A44, 8242~1991!.
24S.-C. Kim, C. H. Lee, and B. H. Seong, Phys. Rev. E60, 3413~1999!.
25C. N. Patra, J. Chem. Phys.111, 6573~1999!.
26F. J. Rogers and D. A. Young, Phys. Rev. A30, 999 ~1984!.
27S.-C. Kim and S. H. Suh, Mol. Phys.99, 81 ~2001!.
28P. Bryk, A. Patrykiejew, and S. Sokolowski, Mol. Phys.99, 1709~2001!.
29R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter14,

12063~2002!.
30T. Boublik, J. Chem. Phys.53, 471 ~1970!; G. A. Mansoori, N. F. Carna-

han, K. E. Starling, and T. W. J. Leland,ibid. 54, 1523~1971!.
31Y.-X. Yu and J. Z. Wu, J. Chem. Phys.119, 2288~2003!.
32Y. Rosenfeld, M. Schmidt, H. Lowen, and P. Tarazona, Phys. Rev. E55,

4245 ~1997!; P. Tarazona, Phys. Rev. Lett.84, 694 ~2000!.
33M. Sindelka and T. Boublik, Fluid Phase Equilib.143, 13 ~1998!.
34C. N. Patra and S. K. Ghosh, J. Chem. Phys.117, 8938~2002!; Y. X. Yu,

J. Z. Wu, and G.-H. Gao,ibid. 120, 7223~2004!.
35Y. X. Yu and J. Z. Wu, J. Chem. Phys.116, 7094~2002!; S. Tripathi and

W. G. Chapman,ibid. 119, 12611 ~2003!; A. Patrykiejew, O. Pizio, L.
Pusztai, and S. Sokolowski, Mol. Phys.101, 2219~2003!.

36Y. X. Yu and J. Z. Wu, J. Chem. Phys.117, 2368~2002!; M. B. Sweatman,
J. Phys.: Condens. Matter15, 3875~2003!; J. Forsman and C. E. Wood-
ward, J. Chem. Phys.120, 506 ~2004!.

FIG. 9. Local concentrations of four fractions of uniform polydisperse hard
spheres near a hard wall at the bulk densityr0bs1

350.24.
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