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The structures of nonuniform binary hard-sphere mixtures and the correlation functions of uniform
ternary hard-sphere mixtures were studied using a modified fundamental-measure theory based on
the weight functions of RosenfeldRosenfeld, Phys. Rev. Lett63, 980 (1989] and
Boublik-Mansoori-Carnahan-Starling-Leland equation of sf&eublik, J. Chem. Phys53, 471

(1970; Mansoaoriet al,, J. Chem. Physs4, 1523(1971)]. The theoretical predictions agreed very

well with the molecular simulations for the overall density profiles, the local compositions, and the
radial distribution functions of uniform as well as inhomogeneous hard-sphere mixtures. The density
functional theory was further extended to represent the structure of a polydisperse hard-sphere fluid
near a hard wall. Excellent agreement was also achieved between theory and Monte Carlo
simulations. The density functional theory predicted oscillatory size segregations near a hard wall
for a polydisperse hard-sphere fluid of a uniform size distribution2@4 American Institute of
Physics. [DOI: 10.1063/1.1763142

I. INTRODUCTION mixtures®!! and polydisperse hard sphere$. Using the

Hard-spherdHs del ol iral role in studvi test-particle method, DFT can also be used to predict the
ard-sphergHS) model plays a central role in studying structures of hard-sphere mixtures or polydisperse hard

the microscopic structures of soft condensed materials usingpheres at uniform conditio&134

statistical mechanics. It provides not only a good representa- The central task of a DFT approach is to construct a

tion of colloidal dispersion'swhere the range of interparticle reasonablv accurate Helmholtz enerav functional for the svs-
attraction is typically much smaller than the particle size but y . . . oy . Y
m under consideration. This functional is usually con-

also an excellent reference for studying the properties o d using k | h d ic inf
simple liquids where the structure is predominately deterStructed using known structural or thermodynamic informa-

mined by the short-ranged repulsibrConventionally the ton for the corresponding bulk fluids. Two common
correlation functions of a uniform hard-sphere fluid are rep-2PProaches have bef” used to develop the approximate
resented by the Percus-YeviRY) integral-equation theo?y Helmr_loltz funcuo_nalé. _One is based on the functlongl per-
while various density functional theorié®FT) (Ref. 4 have  turbation expansion with respect to a reference ?ﬁ.mhd_
been proposed to represent the structures of inhomogeneolf® other follows the so-called weighted-density approxima-
hard spheres. Both approaches are highly accurate for onion (WDA). Many versions exist for both approachés
component hard-sphere systems and multicomponent mixEarly applications of DFT for hard spheres are primarily
tures. However, their applications for predicting the struc-based on WDA for pure inhomogeneous fluids; substantial
tures of polydisperse hard spheres as of interest for man§fforts had been made to extend these approaches to multi-
colloidal applications are more challengingThe integral- component or polydisperse mixtures. For example, Tan
equation approach has been applied to predicting the struét al? simplified Tarazona’s DFTRef. 17 and developed a
ture of a uniform polydisperse hard-sphere flumhd the semiempirical free-energy functional for an inhomogeneous
phase diagram of polydisperse hard-sphere mixturas. binary hard-sphere mixture. Denton and Ashcroffeneral-
similar approach was implemented to predict the structure oized the WDA of Curtin and Ashcrdft and applied it to the
a polydisperse fluid near a hard wall using a singlet-typestructure of binary HS mixture near a wall. Kiet al?* pre-
integral-equation theory.DFT has also been employed to sented a hybrid WDA for nonuniform mixtures. P&frap-
study the structures of nonuniform multicomponentplied the method of decoupling of the weight function for
mixtures. To avoid time-consuming calculations, most DFT
dAuthor to whom correspondence should be addressed. Electronic mai'(.Or hard-sphere mixtures adopted computationally simple
yangxyu@mail.tsinghua.edu.cn versions of WDA and subsequently, less accurate density and
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concentration profiles were obtained. Using the second-order N
direct correlation function and the bridge function of the bulk Fld= kBTZ drp;(n)[In(p;(r)n;) —1], 2
fluid mixture as an input, Patra and Gh&&H recently pro- =1
posed a self-consistent DFT and applied it to studying thavhere \;=(h?/27m;kgT)*? is the thermal wavelength of
structures of binary and ternary hard-sphere mixtures. |mp|ecomponenti and kg is the Boltzmann constant. As in the
mentation of this DFT is coupled with the solution of the original fundamental measure theory, the excess part of
Ornstein-ZernikgOZ) integral equation using the thermody- Helmholtz free-energy functional is assumed to be
namically consistent Rogers-Young clostfte.

The fundamental measure thedMT) originally pro- Fex— kBTf ®"Yn (r)]dr, 3)
posed by Rosenfefl and a simplified version proposed by ¢
Kierlik and Rosinberg' distinguish from most other DFTS of \yhere ®"Yn,(r)] is the reduced excess Helmholtz free-

hard-sphere fluids because they are directly applicable tanergy density. The weight density,(r) is defined as
multicomponent systenfé. FMT assumes that the excess

Helmholtz energy functional can be expressed in terms of the . (@)

weighted densi?i)e/s that take into accoFL)mt the geometric fea- na(f):izl J pi(rHIW([r" =r|,09), (4)
tures of a spherical particle. Because the weight functions are ) . .

independent of density distributions, FMT is numerically Wherea; is the diameter of componenanda (=0, 1, 2, 3,
more convenient than most other WDA. EMT has been preyl, andV2) denote the index of six weight functions given
viously extended to studying the structure of a polydispers@y

fluid in the presence of a hard walf and in contact with a w(r, o) = 6(al2—T1), (5)
semipermeable membraffeHowever, in the original FMT,
the Helmholtz energy functional is based on the PY approxi- W&(r,0)=8(a/2—r1), (6)

mation and it overestimates the contact values of density

(0) =w® 2
distributions. To overcome this disadvantage, Yu and®vu, WEr, o) =wiE(r, o)/ mo”, @)
and independently Rotét al?® proposed a modified version w(r, ) =w(r,0) 270, ®)
of FMT using the Boublik-Mansoori-Carnahan-Starling- o
Leland (BMCSL) (Ref. 30 equation of state as the input. wA(r,a)=(r/r)8(al2—T), ©)
The modified FMT improves both density distributions and w1, o) =wV2(r )20, (10)

the adsorption isotherms of HS near a hard Watir in
microchannel$?! especially at high packing densities. In this whered(r) is the Dirac delta function ané(r) is the Heavi-
work, we apply the modified FMT to studying the structuresside step function.
of binary HS mixtures near a planar hard surface as well as As proposed by Yu and WAF, the HS Helmholtz free-
the radial distribution functions of uniform ternary HS mix- energy density can be expressed in terms of contributions
tures. In addition, we extend the modified FMT to inhomo-from scalar weighted densitieS) and vector weighted den-
geneous polydisperse HS fluids. sities (V)

The rest of this paper is organized as follows. In Sec. Il h o hs(S hs
we briefly present the modified FMT for multicomponent ®Mng]= "G n, ]+ "V n,]. (1)
and polydisperse HS systems. The results for the density arithe scalar part according to the modified FNRef. 13 is
concentration profiles, radial distribution functions, and localgiven by
size segregation will be presented and discussed in Sec. lll. 0N 3 In(1-n,)
Some conclusions will be made in Sec. IV. (I)hs(S)[na(r)]: —neIn(1—ng)+ 172 2 3

1-n; 36mn3

3
n;
1. DENSITY FUNCTIONAL THEORY (DFT) + 36mn5(1—ny)2 (12

A. DFT for multicomponent systems and the vector part by

We consider amN-component mixture of hard spheres at
given temperatur@, total volumeV, chemical potentigl; , OV n (r)]=—
and external potential;(r) (i=1,2,...N). The grand poten-
tial Q is related to the Helmholtz free-energy functional
through a Legendre transform

Nvi-Nvz  Nafye- nvzln(l—n )
1-n,g 127n3 3

NNy Nyo

© 127n5(1—ng)?” (13

N In the limit of a bulk fluid, the two vector weighted densities
Q[{Pi(r)}]:F[{pi(r)}]’L; J drpi(DL¥i(r) — i, ny; andny, vanish, and the Helmholtz free-energy density
(1) ®"s pecomes identical to that from the BMCSL equation of
state®® Although some recent modifications are known to
where{p;(r)} is a set of density distributions. The Helmholtz give a better description for the solid phase, these
free-energy functional can be decomposed into ideal-gas andodifications? would not be more accurate for the fluid
excess parts. The ideal-gas part is known exactly, phase.
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Given the fixed external potentigh(r) and the excess
Helmholtz energy functionaF®* the equilibrium density Q:kBTJ dodrp(r,o){IN[\3(a)p(r,0)]—1}
profile p;(r) can be obtained by solving the coupled integral
equations that are derived from the minimization of the

h
grand potential functional) with respect top;(r), i.e., +kBTf dro Tna(r)]+f dodr[¢(r,0)

—p(o)]p(r,o), (18)

P
pi(r)=pFexp| Bus~B> J (?TW(Q)(“’_ rl,o7)dr’ whereu(o) and\ (o) are, respectively, the chemical potential
‘ ¢ and the thermal wavelength of species with the diameter
Minimization of Eq.(18) leads to the Euler-Lagrange equa-
tion for the inhomogeneous polydisperse fluid,

_Bwl(r) (|:11211N)1 (14)

where B=1/kgT, pP and u* are the bulk density and the P(f,U)IPBf(U)GXF{MeX(O)—Ei/f(f,tf)
residue chemical potential of componeéntespectively. For

the bulk fluid, the residue chemical potential is obtained gPhs
from the BMCSL equation of state. Equatig¢h4) can be - fdr’ an
solved numerically using the Picard-type iterative method ¢
where the weighted densities and integrals are evaluated ughere u®(o) is the residue chemical potential of species
ing a trapezoidal rule. To avoid divergence, it is necessary t@ith the diameters in bulk limit. Both the trapezoidal rule
mix the new and old density profiles in certain proportionsand the Gauss quadrature method, as proposed by Pizio

w(r" =r|,0)|, (19

a

during the iteration process, i.e., et al,*? can be employed to evaluate the weighted densities
and the integral in Eq.19), but the latter is more efficient. If
pi(rg)(r):pgu*tl)(r)f+pi(ri;1)(r)(1_f ), (15)  the external potentiali(r,o) (such as a hard walland the

polydispersity of bulk limit are known in advance, Egs.
wheref is the mixing parameter obtained by trial and error (11)—(13), (17), and(19) are closed and their numerical so-
method. We find that a mesh of 0 yields satisfactory lution gives the full density profile of nonuniform polydis-
numerical accuracymaximum difference of density profiles Perse hard-sphere fluid.
between two iteration id p;=1x10"°). The time required
to solve Eq.(14) depends on the diameter ratios, initial val- 0.15
ues of density profiles, and mixing parameter. For example, @)
when we compute the density profiles of a binary hard-

sphere mixture §,/o01=3, x?=0.2856, andp=0.656) near
a hard wall on a PQwith CPU Athlon XP 1800, System . OloF
memory 256MB DDR SBRAM, 4.25 min is required in the -y
condition of f=0.03 (in the first three iterationsf =
=0.00008) and using bulk densities as initial values of den- 0.05 F
sity profiles. For ternary and polydisperse systems, more =
computation time is needed. Ti\-
000 L L ] '
0 2 4 6 8 10
. z/o,

B. Inhomogeneous polydisperse system

The structure of an inhomogeneous polydisperse HS 12 b
fluid can be specified by the local number density profile, . ®)
p(r,o), of each species with the diameter In the bulk = o9k
limit, the system is characterized by the particle size distri- »:a
bution given by a normalized probability functidfo). The i{.\
bulk density of particle with the diameter is expressed as = 06r

p°(0)=pgf (o). (16) 2 s}
The weighted densities for the inhomogeneous polydisperse
fluid can be simply generalized from E@) 0 2 n 6 s 10

z/o'1
Ny(r) :f dUdr'P(r')W(a)(“,_ rl,o), (17) FIG. 1. (a) Density profiles andb) local concentration of a binary hard-

sphere mixture near a hard wall for the diameter ratjo o, =3.0, bulk

L . . molar fractionx?=0.2856, and bulk packing fraction=0.656. Symbols
Wherew(“)(|r’— r|,o) is given in Eqs(5)—(10). With these  are simulation result$Ref. 22 and the solid curves are results from the

descriptions, the grand potential becomes modified FMT.
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FIG. 3. Radial distribution functions of a ternary hard-sphere mixture with

FIG. 2. The same as Fig. L but for the diameter raido =15, bulk 72 " B8 (L el e e es e pre
lar fractionx?=0.2 Ik packing fraction=0.682. \ i
molar fractionx;=0.2538, and bulk packing fraction=0.68 dicted from the modified FMT. For clarity, curves fg{,(r) andg,4(r), and

for g44(r) andg,,(r) are shifted upward by 0.25 and 0.5, respectively.
IIl. RESULTS AND DISCUSSION

A. Hard-sphere mixtures near a hard wall present pFT accu_rately pred_icts the dgnsity and .mole frac-
o ) ) tion profiles. Previous DFT investigations also yield good
~ We first investigate the structures of binary hard-sphergyerall density profiles but the local mole fractions are less
mixtures near a flat hard wall. In this case, the external posatisfactor$?~2° For a binary HS mixture atr,/o;=1.5,

tential acting on each particiecan be expressed as 7=0.682, andx®=0.2538, similar results can be found in

w z<o;l2 Fig. 2. In both cases, surface segregation is observed and
i(2)= , 20 well reproduced by the present DFT.
%=1 750102 (20) p y the p
wherez is the perpendicular distance from the wall. The bulkB. Structures of ternary hard-sphere mixtures
conditions used in the calculations are specified by the ratio

Using Percus’ test-particle method, DFT can be used to
of the hard-sphere diameters, the packing fractjotefined g b

calculate the radial distribution functions of bulk mixtures. If

as we fix a spherei and obtain the density profilg;(r) of
_— D s componenf around the fixed particle, the radial distribution
n= 521 pioy (21)  functiong;;(r) can be obtained through
1=
() =p: b
and the mole fractio”. In all our calculationsg; is se- 9;i(r)=pi(r)/py. (22)
lected as the unit length. Equation(22) has been applied to ternary hard-sphere mix-

Figures 1a) and 1b) present, respectively, the density tures with the diameter ratios af,/0,=0.6 ando3/o;
and mole fraction profiles near a hard wall for a binary HS=0.3. Figure 3 depicts the predicted radial distribution func-
mixture of o,/0,=3.0, =0.656, andx?=0.2856. For tions for the ternary system at;=x,=x3=1/3 and 7
comparison, the computer simulation results of Bml??>  =0.35, along with the Monte Carlo data of Sindelka and
are also included in both figures. As in a pure HS fluid, theBoublik.3® The agreement between the DFT and the com-
density profiles oscillate with a periodicity of a hard-sphereputer simulation is excellent. The contact values of the radial
diametero; and approach the corresponding bulk densitiedistribution functions from the present DFT are same as
far away from the wall. It shows that the higher the reducedhose from the BMCSL equation of state, indicating the con-
bulk density is, the larger is the magnitude of oscillation insistency of the DFT. We have performed similar calculations
the density profile. It can be seen from these figures that théor other ternary systems by changing the concentration and
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FIG. 5. Radial distribution functions of a ternary hard-sphere mixture as in
FIG. 4. Radial distribution functions of a ternary hard-sphere mixture as inFig. 3 but forx,=1/6, x,=1/3, Xx;=1/2, andz=0.35.
Fig. 3 but for »=0.45.

the overall packing fraction. The predicted results are shown 1

in Figs. 4—6, all are in excellent agreement with the simula- — o<o<oy,

tion data®3 As the reduced density increases, the oscillations flo)=1 917 %y ' (24)

in the radial distribution function profiles magnify, similar to 0 otherwise

the distribution of hard spheres near a hard wall. and the fluid is in contact with a planar hard wall. The ex-

~ We have taken an alternative way to calculate the radiglgyna| potential for the particle with a diametefs expressed
distribution functions from the second direct correlation ¢

functions obtained from the functional derivatives of the ex-
cess Helmholtz energy functional ©  z<o/2

W(z,0)= :
 BEFpi(N}] Tolo z=en
Spi (1) opy (1)

The total correlation functionh;;(r)=g;;(r)—1 are calcu-
lated from the Ornstein-Zernik@?Z) equation via the Fou-

rier transform. However, this route is less accurate than Pel- ) o oh . .
, . e . ulk densitypg,, the oscillation in the density profiles be-
cus’ test-particle method for the radial distribution functions. . 7
comes more pronounced as the patrticle size increases. The

Therefore, only the latter method is used throughout this paégreement between the theoretical predictions and the Monte

‘Carlo simulations is very good, indicating that the present
DFT is capable of predicting the structure of the inhomoge-
neous polydisperse hard spheres with high accuracy. Com-
paring with Fig. 1 of Ref. 12, we find that the present DFT is
We now apply the DFT to polydisperse hard spheresslightly more accurate than those used by Piiall? and

with a special attention given to the effect of a hard wall onby Pagonabarraget al’®

the fluid structure. The polydispersity may be specified by a A three-dimensional plot of the density profile as a func-
Gaussian, exponential, or a uniform probability distributiontion of particle diameter and the distance from the hard wall
function for the particle size. In this work, we focus on ais shown in Fig. 8, where the bulk condition is same as in
uniform distribution functionf (o) within the interval[ o¢, Fig. 7(b). This plot illustrates that the local density changes
oyl continuously with the diameter of the adsorbed particles. The

(25

Cf(—r])= @

Figure 7 compares the density profiles of the smallest (
=0y) and the largestd= o ,=20) particles predicted from
the DFT with that from Monte Carlo simulations at two bulk
densities po,os=0.0908 andpg,os=0.181). At the fixed

functions more accurately than the original FMT.

C. Polydisperse fluid near a hard wall
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FIG. 6. Radial distribution functions of a ternary hard-sphere mixture as in ) . ) .
Fig. 3 but forx,=1/6, X,= 1/3, Xa=1/2, andyp=0.4. FIG. 7. Reduced density profiles for particles of diametero; and o

=20, for polydisperse hard spheres near a hard wall at bulk defajty
popo3=0.0908 andb) popos=0.181. The symbols represent the results of

. . . . MC simulation(Ref. 12 and the solid curves are calculated from the DFT.
contact density of particles shows oscillatory behavior as the

particle size increases. Although here we only considered the
polydisperse fluid systems with uniform size distribution, our
method is feasible to the case with nonlinear distribution ofthe radial distribution functions of hard-sphere mixtures, and
diameters. the predicted results are better than the previous versions of

Significant local size segregation was found for the poly-the density functional theo”?2°The present theory works
disperse fluid with uniform size distribution as discussed insuccessfully not only at high densities but also for highly
Figs. 7 and 8. Figure 9 depicts the local mole fraction pro-
files, x(z,0)=p(z,0)!/ [dop(z,0), for the system with the
size distribution given by Eq(24) and the bulk density
p0b0f=0.24. It can be clearly seen from Fig. 9 that the den-
sity profile of each species oscillates with a spatial period
close to its own diameter. This behavior is similar to that in
binary and ternary mixtures as discussed earlier. In addition,
strong oscillations in the local concentration profiles are
found for the large and small particles, whereas for the par-
ticles close to the mean size€ 1.40; ando=1.604), the
concentration profiles are more uniform. These findings are
qualitatively in coincidence with the predicted results ob-
tained by Pagonabarraga al®

IV. CONCLUSIONS

We have applied the modified fundamental measure
theory to inhomogeneous as well as uniform multicomponent
(binary and ternaryhard-sphere mixtures and polydisperse
SyStemS} E?(tenswe comparison \_N_Ith Monte Carlo SlmuIatlor}:lG. 8. The reduced density distribution of polydisperse hard spheres vs
results indicates that the modified fundamental measurgarticle diameter and the perpendicular distance from the wall at the bulk
theory accurately reproduces the density profiles as well agensitypg,o3=0.181.
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