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Density functional theory for inhomogeneous mixtures of polymeric fluids
Yang-Xin Yua) and Jianzhong Wub)
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California 92521-0425

~Received 19 February 2002; accepted 14 May 2002!

A new density functional theory is developed for inhomogeneous mixtures of polymeric fluids by
combining Rosenfeld’s fundamental-measure theory for excluded volume effects with Wertheim’s
first-order thermodynamic perturbation theory for chain connectivity. With no adjustable
parameters, theoretical predictions are in excellent agreement with Monte Carlo simulation data for
the density distributions and for the adsorption isotherms of hard-sphere chains near hard walls or
in slit-like pores. This theory is applied to calculate the force between two parallel hard walls
separated by hard-sphere chains at different densities. Calculated results indicate that the
chain-mediated force is attractive and decays monotonically with separation at low chain densities,
it oscillates at high chain densities and in between, it is attractive at small separation and repulsive
at large separation. This new density functional theory is simpler than similar theories in the
literature and is directly applicable to mixtures. ©2002 American Institute of Physics.
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I. INTRODUCTION

Structural and thermodynamic properties of confin
polymeric fluids are of interest in industrial applications su
as surface coating, lubrication, adhesion, and colloi
stability.1–3 Properties of confined polymeric fluids are dete
mined by, in addition to attractive forces arising from pol
mer segments and surfaces, a competition between excl
volume of individual segments and chain connectivity. T
excluded-volume effect is most significant at high densit
while chain connectivity dominates polymer properties
low densities.

Whereas the theory of polymer interfaces is now w
advanced, the quantitative description of interfacial therm
dynamic properties remains challenging. Much difficu
arises from the accurate representation of both chain con
tivity and excluded volume effects.4 For instance, self-
consistent-field theory has been remarkably successfu
representing chain connectivity but it is only semiquanti
tive at representing excluded volume effects.5–8 Alternative
approaches include integral-equation theories9–12and density
functional theories~DFTs!.13–15 Two complementary meth
ods can be used to derive the grand potential in density fu
tional theories: one is based on density expansions and
other is based on weighted densities.16 For molecular sys-
tems, the density expansion approach was first propose
Chandler, McCoy, and Singer~CMS!,13–15here referred to as
the CMS-DFT approach;17 the weighted-density approac
for chain fluids was initially introduced by Woodward,18 and
by Kierlik and Rosinburg~KR!.19 Because the closure rela
tions in integral-equation theories can also be derived fr
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density expansions, the CMS-DFT approach is closely tie
integral-equation theories.16

In KR theory for chain fluids, Wertheim’s first-orde
thermodynamic perturbation~TPT1! theory is applied to rep-
resent thermodynamic properties in the bulk limit.20,21 For
engineering applications, TPT1 is attractive because i
relatively simple and compares favorably with simulati
results.22–26 However, numerical implementation of KR
theory is inconvenient because to represent chain conne
ity, it requires the cavity correlation function of inhomog
neous hard-sphere fluid. Alternatively, Yethiraj and Woo
ward ~YW!27,28 proposed a density functional theory th
combines an exact expression for the free energy of no
teracting chains with a weighted-density approach for
excess free energy functional of hard-sphere chains. T
theory requires single-chain density profiles that must be
tained self-consistently from Monte Carlo simulation.

The CMS-DFT approach has also been applied to inv
tigate the structures and thermodynamics of polyatom
fluids.29–32 In this approach, the direct correlation function
are from molecular integral-equation theory and the intram
lecular correlation functions are from a single-chain Mon
Carlo simulation. Recently, more efficient methodologies h
been proposed for numerical implementations.33,34 These
new methods, that avoid extensive single-chain Monte Ca
simulation, have been successfully applied to predict
density profiles,17,34 surface excesses, and surface tension35

of tangentially connected hard-sphere chains near hard
faces, and the entropic forces between hard walls separ
by hard-sphere chains.36

In this paper, we report a new density functional theo
for a ‘‘primitive’’ model of polymer solutions/melts where
polymers are represented by freely jointed hard-sph
chains and solvent molecules are monomeric hard sphe
For direct comparison with molecular simulation results, v
der Waals forces are not included. This new density fu

,

il:
8 © 2002 American Institute of Physics
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tional combines the fundamental measure theory~FMT! of
Rosenfeld37 for excluded volume effect and Wertheim
TPT121 for chain connectivity. It has been applied to descr
the adsorption isotherms, solvation forces, and density
files of hard-sphere chains and chain-sphere mixtures ne
hard wall or in slit pores. Compared with previous theor
for confined polymeric fluids, the method reported here
the advantages of simplicity and numerical efficiency. F
ther, it is directly applicable to mixtures of polymeric fluid

II. THEORY

A. Density functional for mixtures of hard spheres
and hard-sphere chains

We consider a binary mixture of monomeric ha
spheres and tangentially connected hard-sphere chains.
tangentially connected chain, the bond length is equal to
segment diameters1 and there is no angular constraint b
tween neighboring bonds, i.e., each sphere can freely
over the surface of its immediate neighbor unless it enco
ters another sphere. In terms of bonding potentials, the c
connectivity is represented by

Vb~R!5 (
i 51

M21

nb~ ur i 112r i u!, ~1!

whereM stands for the number of segments for each ch
R[(r1 ,r2 , ¯ ,r M) denotes a set of coordinates describi
the segmental positions, andnb is the bonding potential. Fo
an arbitrary chain configuration~arrangement of segments!,
the total bonding energy satisfies

exp@2bVb~R!#} )
i 51

M21

d~ ur i 112r i u2s1!, ~2!

whereb21 is the Boltzmann’s constantkB multiplied by the
thermal temperatureT, d(r ) is the Dirac delta function. The
quantity exp@2bVb(R)# represents the probability density o
a hard-sphere chain with a configurationR.

The proportionality constant in Eq.~2! can be deter-
mined from the normalization condition

~1/V!E exp@2bVb~R!#dR51, ~3!

whereV is the system volume. Substitution of Eq.~3! into
Eq. ~2! yields

exp@2bVb~R!#5 )
i 51

M21
d~ ur i 112r i u2s1!

4ps1
2 . ~4!

Equation ~4! indicates that exp@2bVb(R)#50 whenever
ur i 112r i uÞs1 , i.e., whenever two neighboring segments a
disconnected or overlapped.

The central goal of a density functional theory is to fi
an expression for the grand potentialV, or equivalently, the
Helmholtz energyF as a functional of density distributions
For a mixture of hard spheres and hard-sphere chains
grand potential functional and the Helmholtz energy fun
tional are related via a Legendre transform:
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
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V@rM~R!,r2~r !#5F@rM~R!,r2~r !#

1E @CM~R!2mM#rM~R!dR

1E @C2~r !2m2#r2~r !dr . ~5!

In Eq. ~5!, dR5dr1dr2¯dr M represents a set of differentia
volumes,rM(R) is the chain density as a function of se
ment positionsR, r2(r ) is the density of hard spheres,mM is
the chemical potential of a chain molecule,m2 is the chemi-
cal potential of a hard sphere, andCM(R) and C2(r ) are,
respectively, the external potentials on a chain molecule
on a hard-sphere monomer. The external potential for a ch
molecule is equal to the sum of the potential energy on in
vidual segmentsCM(R)5( i 51

M w i(r i).
Once we have an expression for the grand poten

V@rM(R),r2(r )#, the equilibrium density distributions sa
isfy the stationary condition

dV

drM~R!
5

dV

dr2~r !
50. ~6!

Solutions to Eq.~6! give the density distributions at equilib
rium and subsequently the grand potential and the Helmh
energy.

B. Helmholtz energy functional

For mixtures of hard spheres and hard-sphere chains
Helmholtz energy functionalF@rM(R),r2(r )# can be ex-
pressed as an ideal gas termF id@rM(R),r2(r )# plus an ex-
cess termFex@rM(R),r2(r )# due to intra- and intermolecula
interactions

F@rM~R!,r2~r !#5F id@rM~R!,r2~r !#

1Fex@rM~R!,r2~r !#. ~7!

The ideal gas term is known exactly

bF id5E dRrM~R!@ ln rM~R!21#

1bE dRrM~R!Vb~R!

1E dr r2~r !@ ln r2~r !21#. ~8!

Equation ~8! is different from that for a mixture of mon
atomic ideal gases because it includes the bonding pote
that takes into account chain connectivity. However, Eq.~8!
does not include the excluded volume effect of no
neighboring segments.

To derive the excess Helmholtz energy functional due
intra- and intermolecular interactions, we follow a procedu
first proposed by McMullan and Freed~Ref. 4! and more
explicitly by Woodward~Ref. 18! where the excess Helm
holtz energy is assumed to be a functional of only segm
densities. The contribution to the excess Helmholtz ene
due to the excluded volume effects is represented by
fundamental-measure theory~FMT! of Rosenfeld.37 Unlike
most other density functional theories, FMT is unique b
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



o
u
i
e

te
s.
n

ar
o

th
a

la
n
s

e-

e

ar
cto

i
o-

s
el
ar

s
n-

he

ry
in

eg-

s of
ltz
is-

ain

l

e
a-

s.

2370 J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Y. Yu and J. Wu
cause it is able to predict the direct correlation function
the corresponding bulk fluid rather than to use it as an inp
Besides, it is more accurate than alternative methods for
homogeneous hard spheres. There are recent improvem
over the original FMT but these improvements are targe
for solid phases. Our primarily interest in this work is fluid

We assume that the excess Helmholtz energy functio
can be decomposed as

bFex5E dr$Fhs@na~r !#1Fchain@na~r !#%, ~9!

where Fhs@na(r )# and Fchain@na(r )# are, respectively, the
reduced excess Helmholtz energy densities due to h
sphere repulsion and chain connectivity. Here the chain c
nectivity term arises from the indirect interactions due to
exclude volume effects. In contrast, the ideal gas term
counts only the direct bonding potential. Equation~9! im-
plies that the effect of chain connectivity on intramolecu
interactions can be accounted for using only segment de
ties. Following FMT, the scalar and vector weighted den
ties are defined as

na~r !5(
j

na j~r !5(
j
E r j~r 8!wj

(a)~r2r 8!dr 8, ~10!

where the subscriptsa50, 1, 2, 3,V1, V2 denote the index
of six weight functionswj

(a)(r ); and j 51,2 stands for a
polymeric segment~1! or a solvent molecule~2!. The num-
ber density of segmentsr1(r ) is given by

r1~r !5(
i 51

M

rsi~r !5(
i 51

M E dR d~r2r i !rM~R!, ~11!

wherersi(r ) stands for the local density of segmenti .
Among the six weight functions, three are directly r

lated to the geometry of a spherical particle:

wj
(2)~r !5d~s j /22r !, ~12!

wj
(3)~r !5Q~s j /22r !, ~13!

wj
(V2)~r !5~r /r !d~s j /22r !, ~14!

wheres j represents the diameter of a hard-sphere segm
( j 51) or of a monomeric hard sphere (j 52); Q(r ) is the
Heaviside step function, andd(r ) denotes the Dirac delta
function. Integration of the two scalar functions,wj

(2)(r ) and
wj

(3)(r ), with respect to position gives, respectively, the p
ticle surface area and volume; and integration of the ve
functionwj

(V2)(r ) is related to the gradient across a sphere
the r direction. The other weight functions in FMT are pr
portional to the three geometric functions

wj
(0)~r !5

wj
(2)~r !

ps j
2 , wj

(1)~r !5
wj

(2)~r !

2ps j
,

~15!

wj
(V1)~r !5

wj
(V2)~r !

2ps j
.

All weight functions are independent of the density profile
Using the scaled-particle differential equation, Rosenf

derived the excess Helmholtz energy density due to h
sphere repulsion37
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Fhs$na~r !%5F1
hs1F2

hs1F3
hs, ~16a!

where

F1
hs52n0 ln~12n3!, ~16b!

F2
hs5

n1n22nV1•nV2

~12n3!
, ~16c!

F3
hs5

1
3 n2

32n2nV2•nV2

8p~12n3!2 . ~16d!

In the limit of a bulk fluid, the two vector weighted densitie
nV1 andnV2 vanish, and the Helmholtz energy becomes ide
tical to that from the Percus–Yevick equation or from t
scaled-particle theory.38

According to Wertheim’s first-order perturbation theo
for a bulk fluid, the Helmholtz energy density due to cha
connectivity is given by

Fchain,b5
12M

M
r1b ln y11

hs,b~s1!, ~17!

wherer1b is the segment number density andy11
hs,b(s1) is the

contact value of the cavity correlation function between s
ments, both in the bulk. To extend Eq.~17! to inhomoge-
neous systems, we assume that the weighted densitie
FMT can be similarly applied to calculate the Helmho
energy density due to chain connectivity. However, as d
cussed in our previous work,39 r1b in Eq. ~17! must be re-
placed byn01z1 andy11

hs,b(s1) must be replaced by

y11
hs~s1 ,na!5

1

12n3
1

n2s1z

4~12n3!2 1
n2

2s1
2z

72~12n3!3 , ~18!

wherez1512nV21•nV21/n21
2 and z512nV2•nV2 /n2

2. Sub-
stitution gives the Helmholtz energy density due to ch
formation at inhomogeneous conditions

Fchain~na!5
12M

M
n01z1 ln y11

hs~s1 ,na!. ~19!

Equation ~19! is different from that obtained from a loca
density approximation.

C. Euler–Lagrange equations

Minimization of the grand potential with respect to th
density profiles yields the following Euler–Lagrange equ
tions:

r2~r !5exp@bm22bC2~r !2d~bFex!/dr2~r !#, ~20a!

rM~R!5exp@bmM2bVb~R!2bCext~R!2bL~R!#.
~20b!

In Eq. ~20b!, L(R)5dFex/drM(R) represents an effective
potential field due to intra- and intermolecular interaction
Using Eq.~11!, this effective potential can be simplified to

L~R!5
dFex

drM~R!
5(

i 51

M
dFex

dr1~r i !
. ~21!

Substituting Eq.~21! into Eq. ~20b! yields
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rM~R!5expH bmM2bVb~R!2b(
i 51

M

l i~r i !J , ~22a!

wherel i(r i) is related to the excess Helmholtz energyFex

and the external potentialw i(r i) by

l i~r i !5
dFex

dr1~r i !
1w i~r i !. ~22b!

Equation ~22! indicates that the segment density is det
mined by the chain connectivity and an effective exter
potential l i(r i) that is the same for all segments, as in
typical self-consistent-field theory.6

Introducing segment densitiesrsi(r ) to Eq.~22! yields a
set of coupled integral equations

rsi~r !5E dR d~r2r i !expFbmM2bVb~R!

2b(
j 51

M

l j~r j !G . ~23!

From Eqs.~4!, ~11!, and~23!, we derive the average segme
density of chain molecules

r1~r !5exp~bmM !E dR(
i 51

M

d~r2r i !expF2bVb~R!

2b(
j 51

M

l j~r j !G . ~24!

Equations~20a! and~24! provide the key equations to calcu
late the density profiles of the polymer segments and solv
molecules.

D. Numerical method

We calculated segment density distributions and ads
tion isotherms of hard-sphere chains near a planar hard
or in slit-like hard pores with or without solvent har
spheres. To provide insights into colloidal forces due to n
adsorbing polymers, we also calculated the solvation for
between two hard walls separated by hard-sphere chains
compared the calculated results with Monte Carlo simulat
results whenever they are available.

For each chain segment~j! or a solvent molecule~2!, the
external potential due to a hard wall is

w i~z!

or

C2~z!5H ` z,0

0 z.0,
~25!

wherez represents the perpendicular distance from the w
Similarly, when the mixture is confined in a slit-like har
pore of widthH, the external potential is

w i~z!

or

C2~z!5H ` z,0 or z.H

0 otherwise.
~26!
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For systems with the density distributions changing o
in z direction,r i(r )5r i(z), Eqs.~20a! and~24! can be sim-
plified to

r2~z!5exp@bm22bC2~z!2d~bFex!/dr2~z!#, ~27!

r1~z!5exp~bmM !(
i 51

M

exp@2bl i~z!#Gi~z!GM112 i~z!,

~28!

where the functionGi(z) is determined from the recurrenc
relation

Gi~z!5E dz8 exp@2bl i~z8!#

3
u~s12uz2z8u!

2s1
Gi 21~z8!, ~29!

for i 52,...,M with G1(z)51.
The chemical potentials for solving the density profil

are obtained directly from Wertheim’s TPT1 equation of st
for bulk hard-sphere-chain fluids21

bm25 ln r2b1bm2
hs~r1b,r2b!1

12M

M
r1b

] ln y11
hs,b~s1 ,s2!

]r2b
,

~30a!

bmM5 ln rM1MbmM
hs~r1b,r2b!1~12M !F ln y11

hs,b~s1 ,s2!

1r1b

] ln y11
hs,b~s1 ,s2!

]r1b
G , ~30b!

where r1b5MrM , r2b and rM are, respectively, the bulk
densities of solvent and chain molecules,m1,M

hs is the excess
chemical potential of corresponding hard spheres that is
culated from the scaled-particle theory.40 Equations~30a!
and~30b! are identical to Eqs.~27! and~28! when the exter-
nal potentials are removed.

We apply the Picard-type iterative method to solve E
~27! and ~28!.39 The iteration starts with bulk densities fo
the density profiles of chain segments and solvent molecu
The effective fieldsl i(z) and the functionGi(z) are then
updated using the recurrence relation~29!. A set of new den-
sity profiles is obtained from Eqs.~27! and ~28!, which are
then mixed with the previous results as new input. The ite
tion repeats until the percentage change is smaller than
at all points. The numerical integrations were performed
ing the trapezoidal rule with step sizeDz50.02s.

III RESULTS AND DISCUSSION

A. Density profiles of hard-sphere chains near a hard
wall or in slit pores

Figure 1 compares the calculated density profiles
hard-sphere 20-mers near a hard wall with Monte Ca
simulation data from Yethiraj and Hall.41,42Here the packing
fraction of chain segments in the bulk ishb5prbs3/6
50.1. In Fig. 1 and all subsequent figures, the density p
files are normalized by the bulk valuerb ~or the average
density in the porerav! and the perpendicular distance fro
the wall is given in units ofs. Also included in Fig. 1 are the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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theoretical predictions from the Kierlik and Rosinberg~KR!
theory19 and from an integral-equation theory by Yethiraj a
Hall.11 While all theoretical predictions show correct surfa
depletion, the present theory agrees best with the simula
results. At low density, the depletion of polymer chains
because the polymer configurations are restricted in the
gion near the wall. The contact density predicted by
present theory is slightly lower than that given by the K
theory because in the calculation of the Helmholtz ene
functional due to chain connectivity, we use the Carnaha

FIG. 1. The density profiles of hard sphere 20-mers near a hard wa
hb50.1. Symbols represent simulation results~Refs. 41 and 42!, the solid
line is from this work, the dotted line is from KR theory~Ref. 19!, and the
dashed line is from the integral-equation theory by Yethiraj and Hall~Ref.
11!.

FIG. 2. The segment-density profiles from theoretical predictions~solid
line! and from Monte Carlo simulations~symbols!—Ref. 19—for hard-
sphere trimers in a slit hard pore of widthH510s. The average packing
fractions are~a! hav50.1, ~b! hav50.3, and~c! hav50.4.
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
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Starling equation instead of the Percus–Yevick solution
the contact value of the cavity correlation function of ha
spheres.38

Figures 2–4 compare the calculated density profiles w
Monte Carlo simulation data for hard-sphere chains confi
between hard walls. Three chain lengths are consideredM
52, 4, and 20. Our theory precisely captures the transit
from depletion to adsorption as the chain density increa
At high chain density, the distribution of segments resemb
that for a monomeric fluid because in this case, the distri
tion depends primarily on hard-sphere packing. The cus
z5s reflects the discontinuity of the wall-chain potentia
Even though the current method is simpler than previo
versions of DFTs for hard-sphere chains,17,19,27it provides as
good as or better agreement with simulation results.

Figure 5 shows the density profiles for 100-mers in a
pore. Here the pore width isH510s and the bulk packing
fractions arehb50.025, 0.1, and 0.2. Athb50.025, the
hard-sphere chains are essentially independent of each o
In this case, the depletion persists over a distance appr
mately equal to the root-mean-square radius of gyration o
single chain. As density increases, the packing effect
comes more important and the density profile starts to os
late athb50.2.

B. End and middle segment distributions

Figures 6~a! and 6~b! compare the density profiles of th
end and the middle segments for hard-sphere 20-mers
hard slit pore with pore widthH516s. Two packing frac-
tions are considered,hav50.1 and 0.3. Because of chain co

at

FIG. 3. The segment-density profiles from theoretical predictions~solid
line! and from Monte Carlo simulation—Refs. 41 and 42~symbols! for
hard-sphere 4-mers in a slit hard pore of widthH510s. The average pack-
ing fractions are~a! hav50.1, ~b! hav50.3, and~c! hav50.4.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2373J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Density functional theory for inhomogeneous mixtures
nectivity, the end and the middle segment distributions
dramatically different. At both packing fractions, the en
segment density near the wall is greater than that for
middle segments. Similar results have been found in
neutron-reflectivity experiments for polymer melts.43 Prefer-
ential adsorption of end segments is because the wall

FIG. 4. The average density profiles from theoretical predictions and f
Monte Carlo simulation~Refs. 28 and 42! for hard-sphere 20-mers. The por
width and average packing fractions are~a! H516s, hav50.1, ~b! H
516s, hav50.2, and~c! H510s, hav50.45. The symbols and lines hav
the same meaning as those in Fig. 2. The dashed lines are from KR th
~Ref. 19!.

FIG. 5. The density profiles of 100-mers in a slit pore with widthH
510s at bulk packing fractionshb50.025, 0.1, and 0.2.
Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to A
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smaller effect on the chain configuration when it is in cont
with the end segments compared with that when it is con
with the middle segments. Because the KR theory19 uses the
inhomogeneous cavity correlation function for represent
chain connectivity, it gives slightly better density distrib
tions for the end and the middle segments.

C. Partitioning coefficient and surface excess

The adsorption of hard-sphere chains in a slit pore
width H is characterized by the partitioning coefficient d
fined as

Kc5rav/rb , ~31!

m

ory

FIG. 6. The end- and middle-segment densities of hard-sphere 20-mers
slit pore with width H516s. Open circles and open squares represe
respectively, simulation results~Ref. 42! for the end and middle segmen
solid lines are predictions from this work, the dashed lines are from the
theory ~Ref. 19!. The average packing fractions are~a! hav50.1; ~b! hav

50.3.

FIG. 7. The partitioning coefficient as a function of bulk volume fraction f
hard-sphere 4-mers~open circles and solid line! and 8-mers~open squares
and dash line! in a slit pore with widthH55s. The symbols represen
simulation results~Refs. 41 and 42! and the lines represent predictions fro
this work.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whererb is the bulk density and the average density in
porerav is given by

rav5
1

H E
0

H

r~z!dz. ~32!

For hard-sphere chains near a hard wall, the surface exceG
is defined as

G5E
0

`

@r~z!2rb#dz. ~33!

Figure 7 shows the calculated partitioning coefficientKc

for hard-sphere 4-mers and 8-mers as a function of the b
volume fractionhb at pore widthH55s. Figure 8 gives the
corresponding adsorption isotherms. For both cases,
theory agrees favorably with the simulation data.41,42

Figure 9 presents the surface excesses of hard-sp
20-mers near a hard wall from theory and simulations. D
to chain connectivity, the surface excess exhibits a minim
at intermediate density. Interestingly, the adsorption of ha
sphere chains on a hard wall is qualitatively similar to th
for strongly associating hard-sphere fluids.39 Our predictions
for the surface excesses are in good agreement with t
from CMS-DF theory of Hooperet al.and with the results of
simulation.35

FIG. 8. Adsorption isotherms of 4-mers and 8-mers in a slit pore with wi
H55s. The notations are the same as those in Fig. 7.

FIG. 9. Surface excess as a function of bulk density. Closed circles
triangles represent Monte Carlo results from Yethiraj~Refs. 28, 41, 42! and
from Hooperet al. ~Ref. 33!, respectively. The solid line is the predictio
from this work.
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D. Density profiles of chain-sphere mixtures

We consider equal molar mixtures of hard-sphere 8-m
and monomers confined in slit pores. Theoretical predicti
are compared with Monte Carlo simulation data28 for three
pore widths~H52s, 4s, and 10s! and two packing frac-
tions ~hav,15hav,250.06 and 0.172!. Figure 10 shows tha
when the average packing fraction is small (hav,15hav,2

50.06), the monomer density decays monotonically fro
the wall, while the opposite is true for the segment dens
The drastic difference is again due to the effect of wall
chain configurations. As the average density increa
(hav,15hav,250.172, see Fig. 11!, both segment and mono
mer density profiles exhibit a maximum at the wall. In th
case, the density distributions are dominated by the pack
effect. A comparison of Figs. 10 and 11 indicates that at l
volume fraction, both chain and monomer densities at
wall are insensitive to the change in pore width. However
higher packing fraction, while the wall density for the cha
remains insensitive with pore width, the monomer density
the wall increases significantly as the pore width increas

Figures 12~a! and 12~b! present the density profiles fo
the end and the middle segments of hard-sphere 8-me

d

FIG. 10. Comparison between theory and Monte Carlo simulations~Ref. 46!
for the density profiles to an equal molar mixture of hard-sphere 8-mers
monomers athav50.12. The slit-pore widths are~a! H52s, ~b! H54s,
and ~c! H510s. The open circles refer to Monte Carlo data for ha
spheres, the closed circles are Monte Carlo data for 8-mers and the
lines are calculated from this work.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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those mixtures considered in Figs. 10 and 11. Here the p
width is H54s. Similar to that for the single componen
hard-sphere chains confined in slit pores~Fig. 6!, the density
of the end segments near the wall is greater than that for
middle segments.

E. Solvation forces

The force between two hard walls separated by a ha
sphere-chain fluid can be calculated from the contact va
theorem2

FH /~2AkT!5r~0!, ~34!

whereFH /A is the force per unit area on a single wall a
r(0) is the contact segment density. A factor of 2 in Eq.~34!
is introduced becauseA is defined as the area of a sing
wall. The solvation force per unit area is given byFs5FH

2F` , whereF` is the force per unit area when the walls a
infinitely apart. For hard-sphere chains, the solvation fo
per area can be calculated from

Fs /~2AkT!5r~0!2r`~0!, ~35!

where r`(0) is the site density at the wall when the po
width is H5`.

We calculated the solvation forces between two h
walls separated by hard-sphere 4-mers and 100-mers. Fig
13~a!–~c! present the force profiles at three bulk packi

FIG. 11. Same as Fig. 10 buthav50.344.
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fractions,hb50.1, 0.2, and 0.3. Figure 13~a! shows that at
low chain density, the solvation force is attractive and dec
monotonically toward zero, in consistence with the dens
profiles shown in Figs. 3~a! and 5. At modest density, th
density profile of hard-sphere chains confined in a slit p
exhibits a peak out of the depletion zone@see Figs. 3~b!,
4~b!, and 5#, leading to a similar peak in the solvation forc
@Fig. 13~b!#. It is interesting to note that at moderate dens
a repulsive barrier occurs prior to the attractive deplet
region. At high density, the solvation force oscillates with
periodicity close to the segment diameter. Figure 13~c! indi-
cates that the chain length has little effects on the solva
force at high densities, as predicted by the polymer sca
theories.6 Figure 13 shows that the polymer-mediated solv
tion forces are much more complicated than that given by
simplistic Asakura–Oosawa theory.44 The results shown in
Fig. 13 are in qualitative agreement with integral-equat
theory,10 CMS-DF theory of McCoyet al.,36 and the surface-
force measurements for the force between mica surfa
separated by linear alkanes or in polydimethylsiloxa
~PDMS!.45

IV. CONCLUSIONS

We have shown that the fundamental-measure theor
Rosenfeld for inhomogeneous hard spheres and Werthe
thermodynamic perturbation theory for bulk hard-sphe
chains can be combined to represent the nonideality of in
mogeneous polymeric fluids due to excluded volume effe
and chain connectivity. The new density functional has be
tested with extensive Monte Carlo simulation data for t

FIG. 12. The end- and middle-segment density profiles of hard-sph
8-mers in equal molar mixtures with hard spheres in confined in a slit p
of width H54s. The average packing fractions are~a! hav50.12 and~b!
hav50.344. The open circles and squares represent, respectively, M
Carlo data~Ref. 46! for end and middle segments, and the solid lines are
predictions from this work.
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segment density distributions and adsorption isother
Once van der Waals attractions are included, this new the
will be useful to describe structural and thermodynam
properties of inhomogeneous polymeric fluids and colloi
forces due to nonadsorption polymers.

We also calculated the solvation forces between two p
allel walls separated by hard-sphere chain fluids. At l
chain density, the solvation force is attractive due to
depletion of chain molecules from the surface and it dec
monotonically with separation. At intermediate chain dens
the solvation force shows a maximum repulsion appro
mately at one-segment diameter. At high densities, the so
tion force is an oscillatory function of wall separationH with
a periodicity approximately equal to the segment diame
These features are not captured by the conventio
Asakura–Oosawa theory for polymer mediated interacti
but they are qualitatively consistent with experimental m
surements and integral-equation calculations.
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