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Density functional theory for inhomogeneous mixtures of polymeric fluids
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A new density functional theory is developed for inhomogeneous mixtures of polymeric fluids by
combining Rosenfeld’s fundamental-measure theory for excluded volume effects with Wertheim’s
first-order thermodynamic perturbation theory for chain connectivity. With no adjustable
parameters, theoretical predictions are in excellent agreement with Monte Carlo simulation data for
the density distributions and for the adsorption isotherms of hard-sphere chains near hard walls or
in slit-like pores. This theory is applied to calculate the force between two parallel hard walls
separated by hard-sphere chains at different densities. Calculated results indicate that the
chain-mediated force is attractive and decays monotonically with separation at low chain densities,
it oscillates at high chain densities and in between, it is attractive at small separation and repulsive
at large separation. This new density functional theory is simpler than similar theories in the
literature and is directly applicable to mixtures. ZD02 American Institute of Physics.
[DOI: 10.1063/1.1491240

I. INTRODUCTION density expansions, the CMS-DFT approach is closely tied to
integral-equation theories.

Structural and thermodynamic properties of confined In KR theory for chain fluids, Wertheim’s first-order
polymeric fluids are of interest in industrial applications suchthermodynamic perturbatiofTPT1) theory is applied to rep-
as surface coating, lubrication, adhesion, and colloidatesent thermodynamic properties in the bulk liffit* For
stability’ =3 Properties of confined polymeric fluids are deter-engineering applications, TPT1 is attractive because it is
mined by, in addition to attractive forces arising from poly- relatively simple and compares favorably with simulation
mer segments and surfaces, a competition between excludeesults?>~2® However, numerical implementation of KR
volume of individual segments and chain connectivity. Thetheory is inconvenient because to represent chain connectiv-
excluded-volume effect is most significant at high densitiesty, it requires the cavity correlation function of inhomoge-
while chain connectivity dominates polymer properties atneous hard-sphere fluid. Alternatively, Yethiraj and Wood-
low densities. ward (YW)?"? proposed a density functional theory that

Whereas the theory of polymer interfaces is now wellcombines an exact expression for the free energy of nonin-
advanced, the quantitative description of interfacial thermoteracting chains with a weighted-density approach for the
dynamic properties remains challenging. Much difficulty excess free energy functional of hard-sphere chains. This
arises from the accurate representation of both chain conneteory requires single-chain density profiles that must be ob-
tivity and excluded volume effecfs.For instance, self- tained self-consistently from Monte Carlo simulation.
consistent-field theory has been remarkably successful at The CMS-DFT approach has also been applied to inves-
representing chain connectivity but it is only semiquantita-tigate the structures and thermodynamics of polyatomic
tive at representing excluded volume effe%‘t%A'ternative fluids.29_32 In th|s approach, the direCt Corl’e|ati0n funCtionS
approaches include integral-equation thedfi¥and density ~ are from molecular integral-equation theory and the intramo-
functional theorieDFTs).*~*® Two complementary meth- lecular correlation functions are from a single-chain Monte
ods can be used to derive the grand potential in density funcCarlo simulation. Recently, more efficient methodologies had
tional theories: one is based on density expansions and tf€en proposed for numerical implementatioh¥’ These
other is based on weighted densitlédzor molecular sys- New methods, that avoid extensive single-chain Monte Carlo
tems, the density expansion approach was first proposed jmulation, have been successfully applied to predict the
Chandler, McCoy, and SingéEMS), 23 ®here referred to as  density profiles,** surface excesses, and surface tensfons
the CMS-DFT approack: the weighted-density approach of tangentially connected hard-sphere chains near hard sur-
for chain fluids was initially introduced by Woodwat8and faces, and the entrqpic forces between hard walls separated
by Kierlik and RosinburgKR).X® Because the closure rela- by hard-sphere chairi§.

tions in integral-equation theories can also be derived from !N this paper, we report a new density functional theory
for a “primitive” model of polymer solutions/melts where

. o _ ~_ polymers are represented by freely jointed hard-sphere

dAlso at: The Department of Chemical Engineering, Tsinghua Unlversny,chainS and solvent molecules are monomeric hard spheres

Beijing 100084, P. R. China. . . - . . ’
bAuthor to whom all correspondence should be addressed: electronic maifrOF direct comparison W|th_m0|ECUIar S'mUIanon reSL_I|t5, van
wu@engr.ucr.edu der Waals forces are not included. This new density func-

0021-9606/2002/117(5)/2368/9/$19.00 2368 © 2002 American Institute of Physics

Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Density functional theory for inhomogeneous mixtures 2369

tional combines the fundamental measure thd@T) of Qlpm(R),p2(r)1=F[pu(R),po(r)]

Rosenfeld’ for excluded volume effect and Wertheim's

TPT1? for chain connectivity. It has been applied to describe +J [W),(R)— sy ]pm(R)AR
the adsorption isotherms, solvation forces, and density pro- M Hnipm

files of hard-sphere chains and chain-sphere mixtures near a

hard wall or in slit pores. Compared with previous theories +f [Wa(r)— pmo]po(r)dr. (5)
for confined polymeric fluids, the method reported here has

the advantages of simplicity and numerical efficiency. Fur-In Eq. (5), dR=drdr,---dry represents a set of differential
ther, it is directly applicable to mixtures of polymeric fluids. volumes,py(R) is the chain density as a function of seg-
ment positiond, p,(r) is the density of hard spheres,, is
the chemical potential of a chain molecule, is the chemi-
cal potential of a hard sphere, afty,(R) and W,(r) are,

Il. THEORY . . .

respectively, the external potentials on a chain molecule and
A. Density functional 'for mixtures of hard spheres on a hard-sphere monomer. The external potential for a chain
and hard-sphere chains molecule is equal to the sum of the potential energy on indi-

We consider a binary mixture of monomeric hard Vidual Segme”tﬁ’M(R):E?ﬂzl‘Pi(fi)- _
spheres and tangentially connected hard-sphere chains. In a ©Once we have an expression for the grand potential
tangentially connected chain, the bond length is equal to th€[Pm(R).p2(r)], the equilibrium density distributions sat-
segment diameter; and there is no angular constraint be- ISfy the stationary condition
tween neighboring bonds, i.e., each sphere can freely roll 50 50
over the surface of its immediate neighbor unless it encoun- 5 = =0. (6)

pm(R)  pa(r)

ters another sphere. In terms of bonding potentials, the chain
connectivity is represented by Solutions to Eq(6) give the density distributions at equilib-

rium and subsequently the grand potential and the Helmholtz
energy.

M-1
Vo(R)= 2, w(lrisa=ril), (1)
B. Helmholtz energy functional
whereM stands for the number of segments for each chain,

R=(r,.r,, - ,fy) denotes a set of coordinates describing For mixtures of hard.spheres and hard-sphere chains, the
the segmental positions, ang is the bonding potential. For Helmholz energy functionaF[pw(R),p,(r)] can be ex-

an arbitrary chain configuratiof@arrangement of segmeits pressed as an ideal gas teﬁm[pM_(R),pz(r)]_ plus an ex-
the total bonding energy satisfies cess ternt.,/ pm(R),p2(r)] due to intra- and intermolecular

interactions
M-1

exd — BV,p(R)]= i]jl 8(|ris1—ri|—0y), (2) Flom(R),p2(r)1=Fidl pm(R).pa(r)]
B +Fedpm(R),p2(r)]. )

71 - y . .
whereB™ -~ is the Boltzmann’s constaki; multiplied by the The ideal gas term is known exactly

thermal temperatur&€, 5(r) is the Dirac delta function. The

quantity exp—BVy(R)] represents the probability density of
a hard-sphere chain with a configuratign BFid:f dRpm(R)[In pm(R)—1]
The proportionality constant in Eq2) can be deter-
mined from the normalization condition +'8J’ dRpy(R)Vy(R)
1Nfex—VRdR=1, 3
R ¥ +f dr pa(n)[In pa(r) —1]. ®
whereV is the system volume. Substitution of E®) into ) o )
Eq. (2) yields Equa.tlo.n (8) is different from' that for a m|xture'of mon-
atomic ideal gases because it includes the bonding potential
M1 S(|ris1—1i|—0oq) that takes into account chain connectivity. However, ).
exd — BVp(R)]= Hl 2702 - (4 does not include the excluded volume effect of non-
" ! neighboring segments.
Equation (4) indicates that eqp-BVy(R)]=0 whenever To derive the excess Helmholtz energy functional due to
[ri 1—ri|# 04, i.e., whenever two neighboring segments areintra- and intermolecular interactions, we follow a procedure
disconnected or overlapped. first proposed by McMullan and FreddRef. 4 and more

The central goal of a density functional theory is to find explicitly by Woodward(Ref. 18 where the excess Helm-
an expression for the grand potentfd) or equivalently, the holtz energy is assumed to be a functional of only segment
Helmholtz energyF as a functional of density distributions. densities. The contribution to the excess Helmholtz energy
For a mixture of hard spheres and hard-sphere chains, thdtie to the excluded volume effects is represented by the
grand potential functional and the Helmholtz energy func-fundamental-measure theotfMT) of Rosenfeld’ Unlike
tional are related via a Legendre transform: most other density functional theories, FMT is unique be-
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cause it is able to predict the direct correlation function of  ®"S{n (r)}=®I+ d0S+ @25, (163
the corresponding bulk fluid rather than to use it as an input.
Besides, it is more accurate than alternative methods for inhere

homogenequs hard spheres. Tht_are are recent improvements q)rlls: —ngIn(1—ny), (16b)

over the original FMT but these improvements are targeted

for solid phases. Our primarily interest in this work is fluids. hs. M1N2—Ny1-Nyz 16
We assume that the excess Helmholtz energy functional 27 (1-ngy (160

can be decomposed as
1.3
3Nz NaNy2-Nyo

hs_
q)s 877(1_n3)2

BF o= f dr{®"n,(r)]+ A n (1)1}, ) (16d

where ®"{n_(r)] and ®"n_(r)] are, respectively, the In the limit of a bulk fluid, the two vector weighted densities
reduced excess Helmholtz energy densities due to hardlv: @ndny, vanish, and the Helmholtz energy becomes iden-

sphere repulsion and chain connectivity. Here the chain corfical to that from the Percus—Yevick equation or from the

nectivity term arises from the indirect interactions due to thescaled-particle theor. o _
exclude volume effects. In contrast, the ideal gas term ac- According to Wertheim's first-order perturbation theory

counts only the direct bonding potential. Equatig@ im-  for & bulk fluid, the Helmholtz energy density due to chain
plies that the effect of chain connectivity on intramolecularCOnnectivity is given by

interactions can be accounted for using only segment densi- . 1—
ties. Following FMT, the scalar and vector weighted densi- ehainb—
ties are defined as

M
p1pINYi3P(0y), 17

wherep,, is the segment number density ayl§®(o,) is the
na(r)ZE naj(r)zz f pj(r’)wj(“)(r—r’)dr’, (10) contact value of the cavity correlation function between seg-

i j ments, both in the bulk. To extend EL7) to inhomoge-
where the subscripta=0, 1, 2, 3,V1, V2 denote the index N€OUS systems, we assume that the weighted densities of
of six weight functionswf“)(r); and j=1,2 stands for a FMT can bg similarly app]ied to calf:glate the HeImhoIt;
polymeric segmentl) or a solvent molecul€2). The num-  €nergy Qensny dug to chain conpecnwty. However, as dis-
ber density of segmenis,(r) is given by cussed in our prewoys worR, p1, in Eq. (17) must be re-
placed byngq; andyﬁ’b(al) must be replaced by

2 2
nyo1{ nyoy

hs _
Vil o) = T 02 T 70y

M M
pr(N=2 psi(N=2, | dR&(r—r)pw(R), (11
<1 =1 (18)
wherepg;(r) stands for the local density of segment
Among the six weight functions, three are directly re-
lated to the geometry of a spherical particle:

Where é’lz 1_ nVZl' nV21/n§1 and g: 1_ nvz' nvz /ng Sub'
stitution gives the Helmholtz energy density due to chain
formation at inhomogeneous conditions

w®(r)=8(ci/2-1), (12 B
ngs)(r): O(oj/2-r), (13 PN, = Tn‘”gl Inyiio1n,). (19
WI(VZ)(r):(r/r)5(gj/2—r), (14) Equation (19) is different from that obtained from a local

) density approximation.
where o represents the diameter of a hard-sphere segment Y app

(j=1) or of a monomeric hard spherg=2); O(r) is the
Heaviside step function, and(r) denotes the Dirac delta _
function. Integration of the two scalar functiorvsj(,z)(r) and C. Euler—Lagrange equations

3 . e . .
w{*)(r), with respect to position gives, respectively, the par-  wjinimization of the grand potential with respect to the

ticle gurfacve; area and volume; and integration of the vectofensity profiles yields the following Euler—Lagrange equa-
functlonwj( )(r) is related to the gradient across a sphere injons:

ther direction. The other weight functions in FMT are pro-

portional to the three geometric functions p2(r)=exd Bua—BYo(r)— 8(BFe)/ dpa(r)], (208
wi(r) wi?(r) pm(R)=ex Bum—BVy(R)— B¥ed R)— BA(R)].
W(O)(r)— ] w(l)(r)— 7 20b
j - met i - 2moy (20D
i i
v2) (15) In Eqg. (20b), A(R)=6F.,/opu(R) represents an effective
wVD(r) = wp () potential field due to intra- and intermolecular interactions.
] 27oj Using Eq.(11), this effective potential can be simplified to
All weight functions are independent of the density profiles. OF o M SF oy
Using the scaled-particle differential equation, Rosenfeld ~ A(R)= Sou(R) 24 Spa(r)” (21)
derived the excess Helmholtz energy density due to hard- M a v
sphere repulsiot Substituting Eq(21) into Eq. (20b) yields
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For systems with the density distributions changing only
pM(R):exp{ B,LLM—,BVb(R)—,BZ Ni(ri) (229 in z direction, p;(r) = p;(2), Egs.(209 and(24) can be sim-
=1 plified to
h i(ry) is rel h Helmhol
) oo sl to the excess Helmholiz eneid (2 =exl Buz~ BV 2(2)~ 8 BFo0l0pa(D)],  (21)
I I

M
)\i(ri): 5Fex +(Pi(ri). (22b) pl(z):quBMM)Z eXF[—ﬁ)\i(Z)]Gi(Z)GM+1_i(Z),
opa(ry) i=1

Equation (22) indicates that the segment density is deter- 28)
mined by the chain connectivity and an effective externatvhere the functiorG'(z) is determined from the recurrence
potential \;(r;) that is the same for all segments, as in arelation
typical self-consistent-field theofy. .

Introducing segment densitigs;(r) to Eq.(22) yields a G'(Z)=f dz' exd — B\i(2')]
set of coupled integral equations

y 0(o1—|z—27'))
psi(r):f dR 5(r_ri)exF{BMM_,3Vb(R) 20,

fori=2,...M with G}(2)=1.
- E \ 23 The chemical potentials for solving the density profiles
'BJ- = i) (23 are obtained directly from Wertheim’'s TPT1 equation of state

) for bulk hard-sphere-chain fluitfs
From Eqgs.(4), (11), and(23), we derive the average segment

G4z, (29

density of chain molecules 1-M  9Inyi%(ay,07)
Y y Bua=In papt Bubpip,pan) + v Pb )
P2b
p1(r)=expBum) dRZ'l 5(r_ri)eXF{_ﬁVb(R) (309
M Bum=Inpy+MBuii(pip p2n) + (1= M) Inyi3P(oy,07)
B2 N(T)|. (24)
) ) ) dln y'ﬁ’b(ol,az)
Equationg20g and(24) provide the key equations to calcu- +Ple (30b)
late the density profiles of the polymer segments and solvent 1b
molecules. where p1,=Mpwm, pop @nd py are, respectively, the bulk

densities of solvent and chain moleculgeéjf,\,, is the excess
chemical potential of corresponding hard spheres that is cal-
culated from the scaled-particle thedfyEquations(30a
and(30b) are identical to Eq927) and(28) when the exter-
We calculated segment density distributions and adsorpal potentials are removed.
tion isotherms of hard-sphere chains near a planar hard wall We apply the Picard-type iterative method to solve Egs.
or in slit-like hard pores with or without solvent hard (27) and (28).3° The iteration starts with bulk densities for
spheres. To provide insights into colloidal forces due to nonthe density profiles of chain segments and solvent molecules.
adsorbing polymers, we also calculated the solvation forceShe effective fields\;(z) and the functionG'(z) are then
between two hard walls separated by hard-sphere chains. Wgpdated using the recurrence relati@). A set of new den-
compared the calculated results with Monte Carlo simulatiorsity profiles is obtained from Eq$27) and (28), which are

D. Numerical method

results whenever they are available. then mixed with the previous results as new input. The itera-
For each chain segme(j} or a solvent molecul€?), the  tion repeats until the percentage change is smaller than 0.01
external potential due to a hard wall is at all points. The numerical integrations were performed us-
®i(2) ing the trapezoidal rule with step sizez=0.02.
or
I RESULTS AND DISCUSSION
© z<0 . ) .
Vy(z)= (25) A. Density profiles of hard-sphere chains near a hard
0 z>0, wall or in slit pores

wherez represents the perpendicular distance from the wall.  Figure 1 compares the calculated density profiles for

pore of widthH, the external potential is simulation data from Yethiraj and H&it:*? Here the packing
¢i(2) fraction of chain segments in the bulk ig,=mp,o°/6
or =0.1. In Fig. 1 and all subsequent figures, the density pro-

files are normalized by the bulk valyg, (or the average
(26) density in the porg,,) and the perpendicular distance from
0 otherwise. the wall is given in units ofr. Also included in Fig. 1 are the

o z<0 or z>H

‘1’2(2):{
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FIG. 1. The density profiles of hard sphere 20-mers near a hard wall at
7,=0.1. Symbols represent simulation resyRefs. 41 and 4R the solid

line is from this work, the dotted line is from KR theotRef. 19, and the
dashed line is from the integral-equation theory by Yethiraj and HResf.
11).

theoretical predictions from the Kierlik and Rosinb&kKRR)
theony*® and from an integral-equation theory by Yethiraj and
Hall.** While all theoretical predictions show correct surface
depletion, the present theory agrees best with the simulation
results. At low density, the depletion of polymer chains is

oo,

! 1 — 1

1.5 2.0 25

because the pOIVmer Conﬁgurations are restricted in the '$9G. 3. The segment-density profiles from theoretical predictiteadid
gion near the wall. The contact density predicted by theine) and from Monte Carlo simulation—Refs. 41 and &&mbol$ for
present theory is slightly lower than that given by the KR hard-sphere 4-mers in a slit hard pore of witith- 100. The average pack-
theory because in the calculation of the Helmholtz energyn9 fractions are@ 7a,=0.1, (b) 74,=0.3, and(c) 7a,=0.4.

functional due to chain connectivity, we use the Carnahan—

12 (@)
=
\Q:“ 1.0F T i
=
= 08}
0.6 ' L
0 2 3 4

av

AzYp

2 3 4
4 ©
. 3
=
= 2r
1
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FIG. 2. The segment-density profiles from theoretical predictitudid
line) and from Monte Carlo simulationssymbols—Ref. 19—for hard-
sphere trimers in a slit hard pore of widkdh=100. The average packing

fractions arg@) 7,,=0.1, (b) 7,=0.3, and(c) 7,,=0.4.

Starling equation instead of the Percus—Yevick solution for
the contact value of the cavity correlation function of hard
spheres?®

Figures 2—4 compare the calculated density profiles with
Monte Carlo simulation data for hard-sphere chains confined
between hard walls. Three chain lengths are considévied,
=2, 4, and 20. Our theory precisely captures the transition
from depletion to adsorption as the chain density increases.
At high chain density, the distribution of segments resembles
that for a monomeric fluid because in this case, the distribu-
tion depends primarily on hard-sphere packing. The cusp at
z= o reflects the discontinuity of the wall-chain potential.
Even though the current method is simpler than previous
versions of DFTs for hard-sphere chaif$®?’it provides as
good as or better agreement with simulation results.

Figure 5 shows the density profiles for 100-mers in a slit
pore. Here the pore width id =100 and the bulk packing
fractions aren,=0.025, 0.1, and 0.2. Aty,=0.025, the
hard-sphere chains are essentially independent of each other.
In this case, the depletion persists over a distance approxi-
mately equal to the root-mean-square radius of gyration of a
single chain. As density increases, the packing effect be-
comes more important and the density profile starts to oscil-
late atn,=0.2.

B. End and middle segment distributions

Figures §a) and 8b) compare the density profiles of the
end and the middle segments for hard-sphere 20-mers in a
hard slit pore with pore widthH=160. Two packing frac-
tions are considered;,,= 0.1 and 0.3. Because of chain con-
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4 FIG. 6. The end- and middle-segment densities of hard-sphere 20-mers in a
Q_% slit pore with width H=160. Open circles and open squares represent,
2 3 respectively, simulation resuli®ef. 42 for the end and middle segment,
= 2 solid lines are predictions from this work, the dashed lines are from the KR
1 ) theory (Ref. 19. The average packing fractions a@ 7,,=0.1; (b) 7.,
0 1 1 1 1 1 :03
0

.0 0.5 1.0 15 20 2.5 3.0

smaller effect on the chain configuration when it is in contact
FIG. 4. The average density profiles from theoretical predictions and froquith the end segments compared with that when it is contact

Monte Carlo simulatioriRefs. 28 and 4Pfor hard-sphere 20-mers. The pore . .
width and average packing fractions af@ H=16c, 7,,=0.1, (b) H Wlth the middle segments. Becz_iuse the _KR th&buges the_
=160, 7,=0.2, and(©) H= 100, 7,=0.45. The symbols and lines have iINhomogeneous cavity correlation function for representing

the same meaning as those in Fig. 2. The dashed lines are from KR theoghain connectivity, it gives slightly better density distribu-
(Ref. 19. tions for the end and the middle segments.

ivi ; o C. Partitioning coefficient and surface excess
nectivity, the end and the middle segment distributions are tioning il u X

dramatically different. At both packing fractions, the end-  The adsorption of hard-sphere chains in a slit pore of
segment density near the wall is greater than that for thavidth H is characterized by the partitioning coefficient de-

middle segments. Similar results have been found in thdéined as

neutron-reflectivity experiments for polymer meltsPrefer- Ke=parlp (31)
ential adsorption of end segments is because the wall has ¢ a0
12
1.2
1.0 10
0.8 a”
Q.-D
S 06 0.8
X
0.4
0.6 1 L 1 1
0.2 0.0 0.1 02 0.3 04
: U
0.0
5 FIG. 7. The partitioning coefficient as a function of bulk volume fraction for
z/lo hard-sphere 4-mer®@pen circles and solid lineand 8-mergopen squares

and dash lingin a slit pore with widthH=50¢. The symbols represent
FIG. 5. The density profiles of 100-mers in a slit pore with width simulation resultgRefs. 41 and 4Rand the lines represent predictions from
=100 at bulk packing fractions;,=0.025, 0.1, and 0.2. this work.
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FIG. 8. Adsorption isotherms of 4-mers and 8-mers in a slit pore with width
H=50¢. The notations are the same as those in Fig. 7.

’Di(z)/pav,i
5

YYOUU00000

wherep, is the bulk density and the average density in the 0.0 0.5 1.0 1.5 2.0
porep,, is given by

1 (H
Pav— H fo p(z)dz. (32

For hard-sphere chains near a hard wall, the surface ekcess
is defined as

- P@py;

r- f “Tp(2)— ppldz (33
0

Figure 7 shows the calculated partitioning coefficiknt
for hard-sphere 4-mers and 8-mers as a function of the bulk zlo

volume fractions,, at pore widthH=>5¢. Figure 8 gives the
T P 7 9 9 FIG. 10. Comparison between theory and Monte Carlo simulatieet 46

corresponding adsorption isotherms. For both cases, th’gr the density profiles to an equal molar mixture of hard-sphere 8-mers and

theory agrees favorably with the simulation dﬁ]téz monomers aty,,=0.12. The slit-pore widths ar@ H=2¢, (b) H=40,
Figure 9 presents the surface excesses of hard-sphesad () H=100. The open circles refer to Monte Carlo data for hard

20-mers near a hard wall from theory and simulations. Du _pheres, the closed circles‘ are Monte Carlo data for 8-mers and the solid

. . I . ines are calculated from this work.

to chain connectivity, the surface excess exhibits a minimum

at intermediate density. Interestingly, the adsorption of hard-

sphere chains on a hard wall is qualitatively similar to thatp pensity profiles of chain-sphere mixtures

for strongly associating hard-sphere flurd©ur predictions . .

for the surface excesses are in good agreement with those V€ consider equal molar mixtures of hard-sphere 8-mers

from CMS-DF theory of Hoopeet al. and with the results of and monomers confined in slit pores. Theoretical predictions
simulation®® are compared with Monte Carlo simulation df&téor three

pore widths(H=2c, 40, and 1@) and two packing frac-
tions (7,y,1= 7av2=0.06 and 0.172 Figure 10 shows that
when the average packing fraction is smalj,{ 1= 7,2
=0.06), the monomer density decays monotonically from
the wall, while the opposite is true for the segment density.
The drastic difference is again due to the effect of wall on
chain configurations. As the average density increases
(7av,5= Mav2=0.172, see Fig. 11 both segment and mono-
mer density profiles exhibit a maximum at the wall. In this
case, the density distributions are dominated by the packing
effect. A comparison of Figs. 10 and 11 indicates that at low
volume fraction, both chain and monomer densities at the
wall are insensitive to the change in pore width. However, at
pb63 higher packing fraction, while the wall density for the chain
fG. o, surt function of bulk densitv. Closed dircl remains insensitive with pore width, the monomer density at
triariglés rg:J?ecseer?txfﬂisnsteaéaarloupecst:ﬁtns ?romuYeth?;Iftg: 28?451?, 4%”25 a¢he wall increases significantly as the pore width increases.

from Hooperet al. (Ref. 33, respectively. The solid line is the prediction Figures 12a) an_d 12b) present the density profiles for _
from this work. the end and the middle segments of hard-sphere 8-mers in

-0.2

0.0 0.2 0.4 0.6 0.8 1.0

Downloaded 25 Jun 2003 to 166.111.35.220. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Density functional theory for inhomogeneous mixtures 2375

20

(a)
15+
g
s
QU
= 10
)
=
0.5
0'%.0 0.5 1.0 1.5 2.0
5
(®)
4
o_g 3F
= Q
ORI o
o~ 2t & é
1r - "~.,_____M:‘:‘-I,-,.,I,lels <
e T
0.0 05 1.0 15 20 <
zlo
0'50.0 0.5 1.0 1.5 2.0

zlo

FIG. 12. The end- and middle-segment density profiles of hard-sphere
8-mers in equal molar mixtures with hard spheres in confined in a slit pore
of width H=4¢. The average packing fractions &&® 7,,~0.12 and(b)
na—=0.344. The open circles and squares represent, respectively, Monte
Carlo dataRef. 46 for end and middle segments, and the solid lines are the
predictions from this work.

P Pavi

fractions, 7,=0.1, 0.2, and 0.3. Figure 18 shows that at
low chain density, the solvation force is attractive and decays
monotonically toward zero, in consistence with the density
profiles shown in Figs. @) and 5. At modest density, the
those mixtures considered in Figs. 10 and 11. Here the porgensity profile of hard-sphere chains confined in a slit pore
width is H=4c. Similar to that for the single component exhibits a peak out of the depletion zofeee Figs. &),
hard-sphere chains confined in slit potEg. 6), the density  4(b), and 5§, leading to a similar peak in the solvation force
of the end segments near the wall is greater than that for thgrig. 13b)]. It is interesting to note that at moderate density

FIG. 11. Same as Fig. 10 buf,,= 0.344.

middle segments. a repulsive barrier occurs prior to the attractive depletion
. region. At high density, the solvation force oscillates with a
E. Solvation forces periodicity close to the segment diameter. FigurécLihdi-

The force between two hard walls separated by a hargcates that the chain length has little effects on the solvation

sphere-chain fluid can be calculated from the contact valufPrce at high densities, as predicted by the polymer scaling
theorem theories® Figure 13 shows that the polymer-mediated solva-

tion forces are much more complicated than that given by the
Fu/(2AKT)=p(0), (34 simplistic Asakura—Oosawa thedf/The results shown in

whereF,, /A is the force per unit area on a single wall and Fi9- 13 are in qualitative agreement with integral-equation
p(0) is the contact segment density. A factor of 2 in By)  theory,;” CMS-DF theory of McCoyet al.”” and the surface-

is introduced becausa is defined as the area of a single force measurements for the force between mica surfaces
wall. The solvation force per unit area is given By=F,, ~ Separated by linear alkanes or in polydimethylsiloxane

. . 45
—F.., whereF,, is the force per unit area when the walls are (PDMS).
infinitely apart. For hard-sphere chains, the solvation forc
y ap P Sv. concLUSIONS

per area can be calculated from
We have shown that the fundamental-measure theory of

F</(2AKT)=p(0)—p.(0), (35 Rosenfeld for inhomogeneous hard spheres and Wertheim’s
where p..(0) is the site density at the wall when the pore thermodynamic perturbation theory for bulk hard-sphere
width is H=00, chains can be combined to represent the nonideality of inho-

We calculated the solvation forces between two hardnogeneous polymeric fluids due to excluded volume effects
walls separated by hard-sphere 4-mers and 100-mers. Figuraad chain connectivity. The new density functional has been
13(a)—(c) present the force profiles at three bulk packingtested with extensive Monte Carlo simulation data for the
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