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A modified fundamental measure theory for spherical particles
in microchannels
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Canonical-ensemble Monte Carlo simulation and an improved fundamental-measure theory are
applied to calculating the structures and chemical potentials of neutral and associating spherical
particles confined in rectangular or corrugated microchannels. It is found that the confinement
significantly affects the distributions of neutral spheres in the microchannels, especially at high
densities or near the confining surfaces. However, for associating particles, the combined effects of
packing and association lead to virtually uniform density distributions. The density profiles
calculated from the density functional theory agree well with simulation results for neutral hard
spheres in both rectangular and corrugated microchannels except when the average packing density
inside the channel is near the freezing point. ©2003 American Institute of Physics.
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I. INTRODUCTION

The structure of colloids in confining geometry is close
related to the self-assembly of colloidal particles for mate
applications and to the flow behavior of colloids throu
micropores or channels. For instance, close packed mono
perse silica or latex nanoparticles have been proposed
applications in microphotonic crystal devices and chips.1 Un-
derstanding the fundamental mechanisms that drive the
sembly of particles at microscopic level will bring about ne
strategies for the fabrication of well-ordered arrays of nan
cale objects. On the other hand, transport of colloids thro
pores of colloidal dimensions is commonplace in nature
pecially in biological systems such as blood streams
milk.2 Investigations on the static density distribution of co
fined colloids provide a useful starting point for understan
ing the microscopic flow behavior. Recently, colloidal d
persions in confining geometry have also attrac
considerable theoretical interest as model systems for st
ing the adsorption and phase transitions in redu
dimensionalities.3,4 It has been found that the phase behav
of a confined fluid can be drastically different from that of
bulk fluid.5

Both Monte Carlo~MC! simulation and density func
tional theory~DFT! are commonly used to study the dens
distributions and thermodynamic properties of confined s
tems. Typically, simulation methods are based on the gr
canonical ensemble~GCE! because a confined system is co
ventionally specified by temperature, volume and the che
cal potentials of all species. Whereas there have been ex
sive investigations on the properties of fluids with only on
dimensional inhomogeneity such as fluids in slit por

a!Author to whom correspondence should be addressed. Electronic
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cylindrical pores or spherical cavities,6–10 relatively few
studies have been reported on fluids confined in more c
plicated geometries.11,12 For systems with two-dimensiona
inhomogeneity in particular, Schoen and Dietrich us
GCE–MC to analyze the entropy-driven structure format
of hard spheres in the groove of furrowed hard substrate13

They observed that at sufficiently high packing densities,
furrow leads to a solidlike order of fourfold in-plane symm
try. Henderson and co-workers found that the density dis
butions from GCE–MC simulations are in good agreem
with the predictions of the Tarazona’s DFT.11 Very recently,
Jagannathan and Yethiraj12 applied GCE–MC simulation and
the DFT of Curtin and Ashcroft14 to calculating the density
distributions of hard spheres in square and rectang
channels.12 It was observed that the two-dimensional co
finement could introduce both constructive and destruc
interferences in the density profiles near the corners of
crochannels. Other simulation methods, including canon
ensemble (NVT), Gibbs ensemble~GE!, and isobaric–
isothermal ensemble (NPT), have also been reported fo
investigating the structure and phase behavior of confi
fluids.15 However, straightforward application of GCE or G
methods is limited to systems with relatively low densitie
At a density near the freezing transition, a lengthy simu
tion, up to 1000 million simulation steps per particle, is oft
required to attain accurate density distributions and therm
dynamic properties.16 WhereasNVT and NPT methods
avoid particle insertions, these methods do not provide
chemical potential of confined systems, a quantity of cen
importance in phase-equilibrium calculations. Calculation
chemical potential using the conventional Widom’s metho17

also relies on the insertion of test particles, which is ag
limited to systems of relatively low densities.

Among various density functional theories of classic
il:
8 © 2003 American Institute of Physics
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2289J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Spherical particles in microchannels
systems, the fundamental measure theory~FMT! by Rosen-
feld probably gives the most accurate structural and ther
dynamic properties of inhomogeneous hard-sph
fluids.18,19 This theory assumes that the excess intrin
Helmholtz energy can be expressed in terms of weigh
densities that take into account the geometric feature o
spherical particle. Because the weight functions are indep
dent of density distributions, FMT is numerically more co
venient to implement than most other nonlocal dens
functional theories. Recently, we have reformulated
fundamental-measure theory based on the Boub
Mansoori–Carnahan–Starling–Leland~BMCSL! equation of
state.20–22 This modification leads to improvements on bo
density distributions and the adsorption isotherms of sph
cal particles, especially at high packing densities.23

In this work, we apply theNVT ensemble Monte Carlo
simulation and the improved fundamental-measure theor
investigating the structures and adsorption isotherms of n
tral hard spheres and associating hard spheres in microc
nels of different geometries. For comparison with the pred
tion of the DFT, the chemical potentials in Monte Car
simulation are calculated using a modified Widom’s insert
method.23 Because the excess chemical potential is extra
lated from those for smaller testing hard spheres, this si
lation method is applicable to systems with high pack
densities.

II. NVT SIMULATION OF CONFINED HARD SPHERES

We considerN hard spheres of uniform diameters con-
fined in a rectangular channel of lengthL5( l 11)s in the x
direction and H5(h11)s in the y direction. Periodic
boundary conditions are imposed in thez direction. The ge-
ometry of the rectangular channel is fixed atl 514 andh
59 and the average density of hard spheres within the ch
nel varies fromrs350.42 to 0.93, all below the freezin
density of hard spheres in the bulk. We assume that the
crochannel consists of structureless hard walls with no att
tion to the confined particles.

The conventional Metropolis algorithm is used for ge
erating successive configurations with the probability of s
cessful displacement adjusted to 50%. At each density,
simulation box contains 1001 particles and the simulation
run for 2.13108 Monte Carlo step~MCS! for sampling the
density distributions after about 13106 MCS per particle for
equilibrium. The density profiles are recorded with a fix
bin size of 0.025s.

Along with the density profiles, the excess chemical p
tential of hard spheres is calculated using a modified
dom’s insertion method proposed by Labik and Smith.23 In
this method, the excess chemical potential of a large par
is extrapolated from those for a range of smaller partic
According to the scale-particle theory,24 the excess chemica
potential of a hard-sphere fluid can be related to the work
insert a particle into the system, which is proportional to
particle volume and surface area. It follows that the exc
chemical potential of a hard testing particle can be rep
sented as a third-order polynomial of the particle diameted
approximately
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wherekB stands for the Boltzmann constant andT for tem-
perature. The coefficientsa0 , a1 , a2 anda3 are independen
of hard-sphere diameter and can be obtained by fitting
~1! to the excess chemical potential of smaller particles c
culated using Widom’s insertion method.17 By extrapolating
the diameter of the inserted particle to the hard sphere di
eter s, Eq. ~1! allows us to obtain the excess chemical p
tential of confined hard spheres at relatively high densitie

III. DENSITY FUNCTIONAL THEORY FOR HARD
SPHERES AND ASSOCIATING HARD SPHERES

The essential task of a density functional theory is
provide an analytical expression for the intrinsic Helmho
energyF@r(r )# as a functional of the density distributio
r~r !. For a one-component system with a given chemi
potentialm in an external potentialVext(r ), the equilibrium
density distribution satisfies the Euler–Lagrange equatio

m2Vext~r !5dF@r~r !#/dr~r !. ~2!

With an expression for the intrinsic Helmholtz energ
F@r(r )#, the density distributionr~r ! can be solved from Eq
~2!, and subsequently both structural and thermodyna
properties can be calculated in principle.

In this work, we consider neutral and associating ha
spheres confined in microchannels. The intrinsic Helmho
energy includes an ideal partF id@r(r )# that is known exactly

F id@r~r !#5kBTE dr r~r !$ ln~r~r !l3!21%, ~3!

and an excess partFex@r(r )# that takes into account th
excluded-volume effect and interparticle associations. In
~3!, l stands for the thermal wavelength of a particle. Co
ventionally, it is postulated that the excess intrinsic Hel
holtz energy functional can be expressed as

Fex@r~r !#5kBTE dr F@r~r !#, ~4!

where the excess intrinsic Helmholtz energy densityF@r~r !#
is a function ofr~r !. For the systems considered in this wor
F@r~r !# consists of contributions from hard-sphere repuls
~hs! and interparticle associations~assoc!,

F@r~r !#5Fhs@r~r !#1Fassoc@r~r !#. ~5!

In the limit of a uniform fluid,Vext(r )50 andr~r !5r, the
excess intrinsic Helmholtz energy reduces to the conv
tional residue Helmholtz energy, andF@r~r !# becomes the
residue Helmholtz energy per unit volume.

We use a modified fundamental-measure theory to r
resent the excess intrinsic Helmholtz energy density due
hard-sphere collisions.22 In our previous work, we have
shown that this DFT theory provides an accurate descrip
of density distributions of hard spheres near hard walls
in hard slit pores. In addition, it predicts accurate direct a
pair correlation functions of uniform hard spheres includi
those for highly asymmetric hard-sphere mixtures. As in
original fundamental-measure theory proposed
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Rosenfeld,18,19 the hard-sphere intrinsic Helmholtz energ
density includes contributions from scalar weighted densi
~denoted by the superscriptS! and vector weighted densitie
~denoted by the superscriptV),

Fhs@r~r !#5FS1FV, ~6!

where the scalar intrinsic Helmholtz energy density has
form of BMCSL equation for hard spheres in the bulk22

FS52n0 ln~12n3!1
n1n2

12n3

1F 1

36pn3
2

ln~12n3!1
1

36pn3~12n3!2Gn2
3 ~7!

and the vector intrinsic Helmholtz energy density is deriv
from the scale-particle theory of Resonfeld18,19

FV52
nV1"nV2

12n3
2F 1

12pn3
2

ln~12n3!

1
1

12pn3~12n3!2Gn2nV2"nV2 . ~8!

As in the original fundamental measure theory, the scalar
vector weighted densities are defined as

na~r !5E dr 8 r~r 8!v~a!~r2r 8!, ~9!

wherev (a)(r ) are weight functions that characterize the g
ometry and surface variance of a spherical particle, and
subscriptsa50, 1, 2, 3, V1, V2 are the indices of the
weighted densities. The weighted densitiesv (3)(r ),
v (2)(r ), andv (V2)(r ) are related to the particle volume, su
face area and surface normal vector, respectively,

v~3!~r !5Q~R2r !, ~10!

v~2!~r !5d~R2r !, ~11!

v~V2!~r !5~r /r !d~R2r !, ~12!

whereQ(R2r ) is the Heaviside step function,d(R2r ) is
the Dirac delta function, andR is the hard-sphere radius. Th
other weight functions are proportional to the geome
functions given in Eqs.~10!–~12!,

v~0!~r !5v~2!~r !/~4pR2!, ~13!

v~1!~r !5v~2!~r !/~4pR!, ~14!

v~V1!~r !5v~V2!~r !/~4pR!. ~15!

As indicated earlier, all weight functions are independent
density distributions.

In our previous work,25 we extended the statistical ass
ciating fluid theory~SAFT!26 for the thermodynamic proper
ties of bulk fluids to inhomogeneous systems. The assoc
ing fluid are modeled as a hard sphere with four associa
sites placed in the Bol fashion, i.e., the four bonding sit
designated byA, B, C, andD, are placed in tetrahedral sym
metry around a spherical core. Only associations betw
AC, BC, AD, andBD sites are allowed and all the bondin
energies are assumed to be identical and the associatio
Downloaded 14 Jul 2003 to 166.111.35.209. Redistribution subject to A
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tential is modeled by an anisotropic short-range square w
In the bulk case, the Helmholtz energy density for assoc
tions is given by

Fassoc,b5Mrb~ ln xA
b2xA

b /211/2!, ~16!

whereM is the number of association sites per molecule,xA
b

is the fraction of molecules not bonded at siteA. In Eq. ~21!,
xA

b is calculated from

xA
b5

1

11rb(axa
bD

, ~17!

whereD54pKghs,b(s) f , K is a constant reflecting the vol
ume available for bonding of the two sites on molecules
and 2, f 5exp(e/kBT)21 represents the Mayer function,e is
the square-well depth for the association bonding, a
ghs,b(s) is contact value of the hard-sphere pair correlat
function,

ghs,b~s!5
1

12j3
1

1.5sj2

~12j3!2
1

0.5s2j2
2

~12j3!3
, ~18!

where jm5(p/6)rbsm, and m50, 1, 2, 3. Following our
previous work,25 we useK51.484931024s3 in our calcu-
lations.

To extend Eq.~16! to inhomogeneous systems, in prev
ous paper we replacedj3 , j2 , andrb in Eqs.~16!–~18! with
n3 , 1

6n2z, 1
36n2

2z, and n0z, respectively. Herej51
2nV2"nV2 /n2

2 is used to take into account the vecto
weighted densities. Subsequently, the Helmholtz energy d
sity of association becomes

Fassoc~na!5n0zM F ln xA~r !2
xA~r !

2
1

1

2G , ~19!

where xA(r ) is the fraction of the associating sites n
bonded at positionr . From Eq.~17!, xA(r ) for a fluid con-
taining molecules with four identical associating sites is o
tained from

xA~r !5
A4n0zD~r !1121

2
~20!

with

D~r !54pKghs~s,na!•~ee/kBT21!, ~21!

where K is a constant reflecting the volume available f
bonding between two particles andghs(s,na) is the contact
value of hard-sphere pair correlation function at inhomo
neous conditions

ghs~s,na!5
1

12n3
1

n2sz

4~12n3!2
1

n2
2s2z

72~12n3!3
. ~22!

In the bulk limit, Eq.~22! reduces to the expression for th
contact value of the radial distribution function for ha
spheres.

With the intrinsic Helmholtz energy given by Eqs.~3!,
~6!, and ~19! for contributions from, respectively, ideal-ga
hard-sphere and associations, the Euler–Lagrange equ
~2! now becomes
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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m2Vext~r !5kBT ln@r~r !l3#

1kBTE dr 8S (
a

]F

]na
v~a!~r2r 8! D . ~23!

For spherical particles confined in microchannels, the den
profiles are invariant in thez direction. The external potentia
due to the hard walls is equivalent to imposer50 outside of
the boundaries.

The chemical potential in Eq.~23! can be calculated
from that corresponding to a bulk fluid

m5kBT ln@rbl3#1F8~rb!, ~24!

where F8(rb) is the derivative of the bulk residue Helm
holtz energy densityF with respect to the bulk densityrb .
For hard spheres,F8(rb) is calculated from the Carnahan
Starling equation of state and for associating spheres,
calculated from SAFT. A comparison of Eqs.~23! and ~24!
yields the density profile in microchannels

r~x,y!5rb expFF~rb!1rbF8~rb!

2E dr 8S (
a

]F

]na
v~a!~r2r 8! D G . ~25!

As discussed in our previous works,22,25 Eq. ~25! can be
solved numerically using the Picard-type iterative meth
The weighted densities and the integrals in Eq.~25! are
evaluated using Gauss formulas because they are impr
integrals.

IV. RESULTS AND DISCUSSION

We have performedNVT simulations for neutral hard
spheres of uniform size confined in a hard rectangular ch
nel with fixed heighth59 and length l 514. The two-
dimensional density profiles and the chemical potent
within the channel are calculated at the following averag
reduced densities:ravs

350.42, 0.53, 0.66, 0.72, 0.78, 0.8
and 0.93. Here the averaged density within the channe
defined as

rav5
N

L•H•Lz
, ~26!

where N is the number of particles used in the simulati
L5( l 11)s, H5(h11)s, andLz is the length of the simu-
lation box in thez direction.

The reduced excess chemical potential of a hard sp
in the microchannel is related to the probability of success
insertionsp by

mex52kBT ln p. ~27!

In the original particle-insertion method proposed
Widom,17 the test particle is identical to the real particles.
Table I, we present the probabilities of successful insert
using Widom’s method at various average densities in
rectangular channel. Figure 1 presents the standard de
tions in evaluation of these probabilities calculated from
error estimation method proposed by Flyvbjerg a
Petersen.27 Because the probability of successful insertion
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extremely low at high density, the numerical efficiency
Widom’s method declines as the density increases. In
work, we measure the probability of insertion for a series
hard spheres with diameterd ranging from 0.55s to s. The
excess chemical potential of the real sphere~with diameter
s! is extrapolated by best fitting ofmex(d) using Eq.~1!.
Figure 2 shows the reduced excess chemical potential
function of the diameter of the testing particle at vario
average densities.

From the excess chemical potential calculated from
particle insertion method, we are able to determine
chemical potential and the density of the corresponding b
fluid from

mav
ex1kBT ln rav5mb

ex1kBT ln rb ~28!

and an expression for the excess chemical potential of
bulk fluid mb

ex from the Carnahan–Starling equation
state28

TABLE I. Monte Carlo simulation results for the probability of success
insertion using Widom’s method, the excess chemical potentials (m*
[mav

ex/kBT) from Widom’s method (mW* ) and from the polynomial extrapo-
lation using Eq.~1! (mP* ), the reducedR values in the polynomial fitting,
and the reduced densities of the corresponding bulk fluid with the s
chemical potential frommP* .

rav•s3 p mW* mP* R value rbs3

0.42 4.1231022 3.19 3.19 1.0 0.445
0.53 8.9331023 4.72 4.72 1.0 0.560
0.66 7.0931024 7.25 7.25 1.0 0.693
0.72 1.5131024 8.80 8.80 1.0 0.754
0.78 2.3331025 10.67 10.68 1.0 0.814
0.87 7.0031027 14.17 14.19 1.0 0.901
0.93 1.1031027 16.02 15.97 0.9999 0.937

FIG. 1. The standard deviations in sampling the probability of succes
particle insertion using Widom’s method. The mean values of the inser
probabilities are listed in Table I.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mb
ex/kBT5

h~829h13h2!

~12h!3
. ~29!

In Eq. ~29!, h5(p/6)rbs3 is the packing fraction of hard
spheres. Table I presents the extrapolated excess che
potentials atd5s, the corresponding bulk densities, and t
R-squared values of the polynomial fit using Eq.~1!.

Figures 3~a! and 3~b! show the normalized density pro
files r(x,y)/rb within the microchannel at two different av
eraged densities,ravs

350.42 and 0.93, respectively, corre
sponding to the lowest and highest densities investigate
this work. At the low density, the distribution of hard spher
within the microchannel is relatively uniform. The densiti
near the walls and corners are comparable to the con
values of the radial distribution function for uniform ha
spheres at the same packing density. However, at the
density, the local densities at the corners are about two or
of magnitude larger than those in the middle, indicating t
the particles are highly localized near the walls and corn
Figures 4~a! and 4~b! show the density profiles at the mid
plane alongx andy directions (x/s57 andy/s54.5). Here
the average densities are identical to those shown in Fig
While the distribution of hard spheres at the midplane
invariant in x or y directions for the low-density case, re
markable difference is observed for the high-density ca
indicating the effect of confinement is enhanced as den
increases.

Figures 5~a! and 5~b! compare the normalized loca
number density profiles near the wall (y/s50.0625) and at
the midplane (y/s54.4875) calculated from the Mont
Carlo simulation to those predicted from the density fun
tional theory. While the agreement between theory and si
lation is excellent at low average density, the accuracy of
theory deteriorates as density increases and it becomes

FIG. 2. The excess chemical potentials of testing particles of various d
eters in a hard-sphere fluid confined in a rectangular channel withl 514 and
h59. The testing sphere is identical to the real hard sphere whend/s51.
Downloaded 14 Jul 2003 to 166.111.35.209. Redistribution subject to A
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semiquantitative near the freezing of hard spheres. The p
performance of the DFT at high density is probably due
the inaccuracy of the fundamental measure theory for hig
confined systems. The failure of the fundamental meas
theory at high density is because its Helmholtz energy fu
tional diverges in the 0-dimensional limit. A possible im
provement of the density functional theory is by imposi
the exact free energy in the zero-dimension limit as propo
by Tarazona.29

We have applied the DFT theory to calculate dens
profiles in microchannels of other geometry and compa
with simulation results from the literature. The structure
hard-sphere fluid confined in a corrugated channel was
vestigated using GCMC simulation by Schoen a
Dietrich.13 In Fig. 6 we sketch the corrugated hard chann
system investigated in this work. The corrugated channe
composed of periodic arrays of parallel hard wedges. T
corrugated substrate is characterized by the dihedral angg
of the grooves, the lateral periodicity lengthSx in the x di-
rection and distanceSy between two opposite substrates. Fi
ure 7 compares a slice of the density distribution evalua

-

FIG. 3. The normalized density profilesr(x,y)/rb of a confined hard-
sphere fluid in the rectangular channel as in Fig. 2 fromNVT simulation.~a!
ravs

350.42, ~b! ravs
350.93. Because of the symmetry of the rectangu

channel, the density profile in a quarter of the microchannel is present
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



a
he
nt

is
s
e

e
w
er

em

of
d
ber
r the
s in
cia-
the

cor-
ard

hard
s,
ard
ur-
. As
ibu-

ro
s
e

ct-

2293J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Spherical particles in microchannels
from the DFT and from the simulation13 at x/s50.36 and a
reduced bulk density of 0.7016 in the hard corrugated ch
nel for g5p/2. In this case, the agreement between the t
oretical prediction and molecular simulation is excelle
Figure 8 shows an overall local density profile in thex–y
plane calculated from the improved FMT. Similar to the d
tribution of hard spheres in rectangular channels, the den
profile exhibits peaks along the corners and on each sid
the corrugated walls.

The DFT was also used to investigate the effect of int
particle association on density distributions. Figure 9 sho
the density profile of a four-sited associating hard-sph
fluid at temperature 1/T* 58 and bulk density rbs3

50.7016 in a rectangular channel. Here the reduced t
perature is defined asT* 5kBT/e, wheree is the site bond-
ing energy. In this calculation, the volume parameterK in the
SAFT theory is set to be 1.484931024s3. As for the hard-

FIG. 4. The density profiles at the midplane of the rectangular channel f
Monte Carlo simulation. Here the lines correspond to the density profile
h54.5 and the points to those atl 57. The rectangular channel is the sam
as that shown in Fig. 2.
Downloaded 14 Jul 2003 to 166.111.35.209. Redistribution subject to A
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sphere case, the rectangular channel has the dimensionh
59 andl 514. In contrast to the density profiles of confine
neutral hard spheres as shown in Fig. 3, the local num
densities at the corners are much smaller than those nea
walls. The density distribution of associating hard sphere
the channel is determined by two competing effects: asso
tion and excluded volume. Because confinement restricts
associations, the particles are depleted from the walls or
ners. On the other hand, the excluded volumes of the h
spheres leads to the accumulation of particles near a
wall. While the former takes place only in associating fluid
the latter appears in both neutral and associating h
spheres. Finally, Fig. 10 shows the density profiles of fo
sited associating hard spheres near the confining walls
expected, the packing effect dominates the density distr

m
at

FIG. 5. ~a! Density distributions of hard spheres near the wall of the re
angular channel calculated from Monte Carlo simulation~points! and from
DFT ~lines!. ~b! Same as~a! but at the midplane.
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tion at low bonding energy~equivalently low 1/T* ) and the
association effect is important at high binding energy.

V. CONCLUSIONS

We have appliedNVTensemble Monte Carlo simulatio
and a newly proposed density functional theory to investig
ing the structures of confined spherical particles in rectan
lar and corrugated microchannels. We find that the den
distribution of particles within microchannels is strongly a
fected by interparticle association and the geometry of c
finement, especially at high densities. The prediction of d
sity profiles from the density functional theory agrees w
with simulation results for neutral hard spheres except n
the freezing point.

FIG. 6. Structure of the hard corrugated channel consisting of two oppo
hard wedges of side lengthS8510s, Sy512s and dihedral angleg5p/2 in
the (x,y) plane.

FIG. 7. Density distribution of hard spheres in the hard corrugated cha
at x/s50.36 and bulk densityrbs350.7016. Here the simulation result
are from Schoen and Dietrich~Ref. 10!.
Downloaded 14 Jul 2003 to 166.111.35.209. Redistribution subject to A
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The chemical potential of hard spheres in a confin
geometry can be effectively calculated using an extension
Widom’s particle insertion method where the insertion pro
ability is extrapolated from those for smaller particles.
might be interesting to use theNVT ensemble for studying
the structural ordering of spherical particles in a confin
geometry. While most previous applications of DFT for i
homogeneous fluids have been limited to systems of o
dimensional symmetry, this work demonstrates the feasib
of the application to multidimensional systems. Althou
similar applications had been reported for neutral h

ite

el

FIG. 8. The three-dimensional density profile for a hard-sphere fluid c
fined by the hard corrugated channel as shown in Fig. 5.

FIG. 9. Density distribution of a four-sited associating hard-sphere fluid
rectangular channel withl 514 andh59 at bulk densityrbs350.7016 and
reduced temperature 1/T* 58.
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spheres, to our knowledge, no work has been published
the density profiles of two-dimensional associating fluids.
the future work, we plan to apply similar simulation an
density functional theory to investigating wetting transitio
and capillary condensations at heterogeneous surfaces.

The systems considered here represent simple mode
colloidal dispersions confined in microchannels that are
interest to material chemists for the fabrications of collo
based optical devices.30,31
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