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A modified fundamental measure theory for spherical particles
in microchannels
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Canonical-ensemble Monte Carlo simulation and an improved fundamental-measure theory are
applied to calculating the structures and chemical potentials of neutral and associating spherical
particles confined in rectangular or corrugated microchannels. It is found that the confinement
significantly affects the distributions of neutral spheres in the microchannels, especially at high
densities or near the confining surfaces. However, for associating particles, the combined effects of
packing and association lead to virtually uniform density distributions. The density profiles
calculated from the density functional theory agree well with simulation results for neutral hard
spheres in both rectangular and corrugated microchannels except when the average packing density
inside the channel is near the freezing point. 2603 American Institute of Physics.
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I. INTRODUCTION cylindrical pores or spherical cavitiés! relatively few

studies have been reported on fluids confined in more com-

The structure of colloids in confining geometry is closely plicated geometrie¥:*? For systems with two-dimensional
related to the self-assembly of colloidal particles for material

applications and to the flow behavior of colloids throughmhomerne'ty In_particular, Schoen and Dietrich used

micropores or channels. For instance, close packed monodiga-ChE_dNIC rtlo ana]yz; the entropgl-fdrlven Ztr#ctgre Er;rﬂgitnon
perse silica or latex nanoparticles have been proposed fé)rfh ar bSp erzsrlln N grf‘]f,o‘,’ej #rrﬁwe ki ar dsu St esh.
applications in microphotonic crystal devices and cHips- They observed that at sufficiently high packing densities, the

derstanding the fundamental mechanisms that drive the alUoW leads to a solidlike order of fourfold in-plane symme-
sembly of particles at microscopic level will bring about new Y- Henderson and co-workers found that the density distri-
strategies for the fabrication of well-ordered arrays of nanosPutions from GCE-MC simulations are in good agreement

cale objects. On the other hand, transport of colloids throughVith the predictions of the Tarazona's DETvery recently,
pores of colloidal dimensions is commonplace in nature esJagannathan and Yethitappplied GCE-MC simulation and

pecially in biological systems such as blood streams ande DFT of Curtin and Ashcroft to calculating the density
milk.? Investigations on the static density distribution of con-distributions of hard spheres in square and rectangular
fined colloids provide a useful starting point for understand-channels? It was observed that the two-dimensional con-
ing the microscopic flow behavior. Recently, colloidal dis- finement could introduce both constructive and destructive
persions in confining geometry have also attractednterferences in the density profiles near the corners of mi-
considerable theoretical interest as model systems for studgrochannels. Other simulation methods, including canonical
ing the adsorption and phase transitions in reduce@nsemble NVT), Gibbs ensemble(GE), and isobaric—
dimensionalities:* It has been found that the phase behaviorisothermal ensembleNPT), have also been reported for
of a confined fluid can be drastically different from that of ainvestigating the structure and phase behavior of confined
bulk fluid > fluids I® However, straightforward application of GCE or GE
Both Monte Carlo(MC) simulation and density func- methods is limited to systems with relatively low densities.
tional theory(DFT) are commonly used to study the density At a density near the freezing transition, a lengthy simula-
distributions and thermodynamic properties of confined systion, up to 1000 million simulation steps per particle, is often
tems. Typically, simulation methods are based on the grancequired to attain accurate density distributions and thermo-
canonical ensemblgCE) because a confined system is con-dynamic propertie$> WhereasNVT and NPT methods
ventionally specified by temperature, volume and the chemiavoid particle insertions, these methods do not provide the
cal potentials of all species. Whereas there have been exteahemical potential of confined systems, a quantity of central
sive investigations on the properties of fluids with only one-importance in phase-equilibrium calculations. Calculation of
dimensional inhomogeneity such as fluids in slit poreschemical potential using the conventional Widom’s metfiod
also relies on the insertion of test particles, which is again

dAuthor to whom correspondence should be addressed. Electronic mail!m'ted to Sy5tems of rela_t'vely IO\_N densmes_. )
jwu@engr.ucr.edu Among various density functional theories of classical
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systems, the fundamental measure the®&\T) by Rosen- 3

feld probably gives the most accurate structural and thermo- Mgv(d)/kBTzz ad, (1)
dynamic properties of inhomogeneous hard-sphere =0

fluids!®'° This theory assumes that the excess intrinsiovherekg stands for the Boltzmann constant ahdor tem-
Helmholtz energy can be expressed in terms of weightegerature. The coefficients,, a,, a, andag are independent
densities that take into account the geometric feature of af hard-sphere diameter and can be obtained by fitting Eq.
spherical particle. Because the weight functions are indeperd) to the excess chemical potential of smaller particles cal-
dent of density distributions, FMT is numerically more con- culated using Widom’s insertion methdtiBy extrapolating
venient to implement than most other nonlocal density-the diameter of the inserted particle to the hard sphere diam-
functional theories. Recently, we have reformulated theetero, Eg. (1) allows us to obtain the excess chemical po-
fundamental-measure theory based on the Boublik+tential of confined hard spheres at relatively high densities.
Mansoori—Carnahan—Starling—LelafBMCSL) equation of

state?~22 This modification leads to improvements on both |j|. DENSITY FUNCTIONAL THEORY FOR HARD

density distributions and the adsorption isotherms of spheriSPHERES AND ASSOCIATING HARD SPHERES

cal particles, especially at high packing densities. The essential task of a density functional theory is to

In this work, we apply theNVT ensemble Monte Carlo i vtical ion for the intrinsic Helmholt
simulation and the improved fundamental-measure theory tgrovide an analytical expression for the Intrinsic He/mnottz
2nergy F[p(r)] as a functional of the density distribution

investigating the structures and adsorption isotherms of ned: . : .
(r). For a one-component system with a given chemical

tral hard spheres and associating hard spheres in microchaf tential  in an external otentiaV.(r) . th ilibrium
nels of different geometries. For comparison with the predic—poe alp In an externa pote ex(r), the equ u

tion of the DFT, the chemical potentials in Monte Carlo density distribution satisfies the Euler—Lagrange equation

simulation are calculated using a modified Widom’s insertion  u— Ve, (r)=SF[p(r)]/ Sp(r). 2

3 . . . _
method?® Because the excess chemical potential is extrapoWith an expression for the intrinsic Helmholtz energy

lated from those for smaller testing hard spheres, this simu- e
lation method is applicable to systems with high packingF[p(r)]’ the density distributiop(r) can be solved from Eg.

. (2), and subsequently both structural and thermodynamic
densities. : . S
properties can be calculated in principle.
In this work, we consider neutral and associating hard
1. NVT SIMULATION OF CONFINED HARD SPHERES sphere; confined iq microchannels. The. intrinsic Helmholtz
energy includes an ideal pafty p(r)] that is known exactly
We consideN hard spheres of uniform diametercon-
fined in a rectangular channel of lendtk= (1 +1)o in thex Fid[P(r)]:kBTJ dr p(n){In(p(r)\3)—1}, 3
direction andH=(h+1)o in the y direction. Periodic
boundary conditions are imposed in théirection. The ge- and an excess paf,]p(r)] that takes into account the
ometry of the rectangular channel is fixedlat14 andh  excluded-volume effect and interparticle associations. In Eq.
=9 and the average density of hard spheres within the chan3), \ stands for the thermal wavelength of a particle. Con-
nel varies frompa3=0.42 to 0.93, all below the freezing ventionally, it is postulated that the excess intrinsic Helm-
density of hard spheres in the bulk. We assume that the mholtz energy functional can be expressed as
crochannel consists of structureless hard walls with no attrac-
tion to the confin_ed particles. _ _ _ Fex[P(r)]:kBTf dr ®[p(r)], (4)
The conventional Metropolis algorithm is used for gen-
erating successive configurations with the probability of sucwhere the excess intrinsic Helmholtz energy dengify(r)]
cessful displacement adjusted to 50%. At each density, thig a function ofp(r). For the systems considered in this work,
simulation box contains 1001 particles and the simulation iSP[p(r)] consists of contributions from hard-sphere repulsion
run for 2.1x 168 Monte Carlo step(lg/(laCS) for sampling the (hg and interparticle associatioriassog,
density distributions after about<110° MCS per particle for
equilibrium. The density profiles are recorded with a fixed PLp(1]= @M p(1)]+@*Fp(r)]. ®)
bin size of 0.025. In the limit of a uniform fluid,V¢,(r)=0 andp(r)=p, the
Along with the density profiles, the excess chemical po-excess intrinsic Helmholtz energy reduces to the conven-
tential of hard spheres is calculated using a modified Witional residue Helmholtz energy, arb|p(r)] becomes the
dom’s insertion method proposed by Labik and Srfitin residue Helmholtz energy per unit volume.
this method, the excess chemical potential of a large particle We use a modified fundamental-measure theory to rep-
is extrapolated from those for a range of smaller particlesresent the excess intrinsic Helmholtz energy density due to
According to the scale-particle thed#the excess chemical hard-sphere collisior®. In our previous work, we have
potential of a hard-sphere fluid can be related to the work teshown that this DFT theory provides an accurate description
insert a particle into the system, which is proportional to theof density distributions of hard spheres near hard walls and
particle volume and surface area. It follows that the excess hard slit pores. In addition, it predicts accurate direct and
chemical potential of a hard testing particle can be reprepair correlation functions of uniform hard spheres including
sented as a third-order polynomial of the particle diamdter those for highly asymmetric hard-sphere mixtures. As in the
approximately original  fundamental-measure theory proposed by
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Rosenfeld®'® the hard-sphere intrinsic Helmholtz energy tential is modeled by an anisotropic short-range square well.
density includes contributions from scalar weighted densitiesn the bulk case, the Helmholtz energy density for associa-
(denoted by the superscrift and vector weighted densities tions is given by

denoted by th iw,
(denoted by the superscrip? O399 M e (In X/ti_)(lz\/2+ 12), (16)

D" p(r)]=05+ Y, (6)
P whereM is the number of association sites per molecm&,

where the scalar intrinsic Helmholtz energy density has thes ihe fraction of molecules not bonded at gikeln Eq.(21),

form of BMCSL equation for hard spheres in the ifdlk X/ti is calculated from

NN,

S_ _ _ 1
d NoIn(1—nz)+ 1-n, X/ti:—bv 17
1+praXaA
1 . .
+ 5IN(1-ng) + —21 n3 (7)  whereA=47Kg"*(o)f, K is a constant reflecting the vol-
36mn; 36mn3(1—n3) ume available for bonding of the two sites on molecules 1
and the vector intrinsic Helmholtz energy density is derived®d 2.f=exp(e/kgT)—1 represents the Mayer functioais
from the scale-particle theory of Resonféid’ the square-well depth for the association bonding, and
hsp ; . .
g™”(o) is contact value of the hard-sphere pair correlation
Ny1°N function,
PV=— i’l_nvz { 5In(1-ny)
3 [12mng 1 150¢ 05028

g"°(0) = (18)

1

+ F—
127n5(1—ngy)? where ¢é,=(7/6)p,o™, andm=0, 1, 2, 3. Following our

: 5 _ —4 3
As in the original fundamental measure theory, the scalar an€V!ous worki® we useK =1.4849<10" ¢ in our calcu-

vector weighted densities are defined as lations. . _ .
To extend Eq(16) to inhomogeneous systems, in previ-

n(N=| dr’ p(re®@r—r"), 9 ous paper we replacefd, &,, andpy in Egs.(16)—(18) with
(1) f p(r)w ) © N3, #N2{, 35, and nol, respectively. Hereg=1

2 . .
wherew @ (r) are weight functions that characterize the ge-~Nv2"Mv2/Nz is used to take into account the vector-
ometry and surface variance of a spherical particle, and th@€ighted densities. Subsequently, the Helmholtz energy den-
subscriptsa=0, 1, 2, 3,V1, V2 are the indices of the Sy Of association becomes

+
1-— _ 2 _ 3’
lnznvz.nwl ® €3 (1-&)% (1-&)

weighted densities. The weighted densities®)(r), a1
0@(r), andwV?)(r) are related to the particle volume, sur-  ®3°Fn ) =nyZM|In ya(r)— ——+3) (19
face area and surface normal vector, respectively,

3), . where ya(r) is the fraction of the associating sites not
0P(N=6(R-r), (10 bonded at positiom. From Eq.(17), xa(r) for a fluid con-
0P (r)=8(R-r), (11)  taining molecules with four identical associating sites is ob-

tained from
oVA(r)=(r/r)8(R-r), (12
where®(R—r) is the Heaviside step functiod(R—r) is xa(r)= V4nofA(r)+1-1 (20)
the Dirac delta function, anR is the hard-sphere radius. The 2
other weight functions are proportional to the geometric,;ip,
functions given in Eqs(10)—(12), ) et
0O(1) = 0 @(1)/(47R?), 13 A(r)=4wKg"(o,n,)-(e*8"'~1), (21

(Dfer— (2) where K is a constant reflecting the volume available for

@ (r)=w=(r)/(4mR), (14 bonding between two particles agli{o,n,) is the contact

0VV(1)= V2 (r)/(47R). (15) value of hard-sphere pair correlation function at inhomoge-

- . . . . neous conditions
As indicated earlier, all weight functions are independent of

density distributions. . 1 nyo{ n3a?¢

In our previous work® we extended the statistical asso- 9" (9Ne) =7+ PYEPRY. + A 1—n3’ (22)
ciating fluid theory(SAFT)? for the thermodynamic proper- 3 4(=ny (1=n3)
ties of bulk fluids to inhomogeneous systems. The associath the bulk limit, Eq.(22) reduces to the expression for the
ing fluid are modeled as a hard sphere with four associatingontact value of the radial distribution function for hard
sites placed in the Bol fashion, i.e., the four bonding sitesspheres.
designated by, B, C, andD, are placed in tetrahedral sym- With the intrinsic Helmholtz energy given by EqgR),
metry around a spherical core. Only associations betwee(6), and(19) for contributions from, respectively, ideal-gas,
AC, BC, AD, andBD sites are allowed and all the bonding hard-sphere and associations, the Euler—Lagrange equation
energies are assumed to be identical and the association p@ now becomes
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M_Vext(r) =kgT In[p(r))\3] TABL!E I qute Cf':ll’|0 §|mulat|on results for the probap|||ty of suqcessful
insertion using Widom’s method, the excess chemical potential§s (
ob = puaykgT) from Widom’s method £3,) and from the polynomial extrapo-
+ kBTf dr’ E &—w(“)(l’—r’) . (23 lation using Eq.(1) (u}), the reducedr values in the polynomial fitting,
a a and the reduced densities of the corresponding bulk fluid with the same

. . . . . ..chemical potential fromu} .
For spherical particles confined in microchannels, the density P e

profiles are invariant in thedirection. The external potential . 53 p uh uh R value ppo
due to the hard walls is equivalent to impgse0 outside of

) 0.42 412102 3.19 3.19 1.0 0.445
the boundaries. o 053 89%10°3 472 472 1.0 0.560
The chemical potential in Eq23) can be calculated 0.66 709K 104 705 705 1.0 0.693
from that corresponding to a bulk fluid 0.72 15104 8.80 8.80 1.0 0.754
_ 3 , 0.78 2.3%10°°  10.67 1068 1.0 0.814
w=KgTIN[p\°T+ D' (py), (24 0.87 70107 1417 1419 10 0.901
0.93 1.10<1077 16.02 15.97 0.9999 0.937

where ®'(p,,) is the derivative of the bulk residue Helm-
holtz energy densityp with respect to the bulk density, .
For hard spheresh’(py) is calculated from the Carnahan—
Starling equation of state and for associating spheres, it is

calculated from SAFT. A comparison of Eq23) and (24) extremely low at high density, the numerical efficiency of

yields the density profile in microchannels Widom’s method declines as the density increases. In this
work, we measure the probability of insertion for a series of
p(X,Y)=pp EXI{‘D(Pb)ﬂLPb‘I’(Pb) hard spheres with diametdrranging from 0.5 to o. The
excess chemical potential of the real sphewéh diameter
I D o) is extrapolated by best fitting g&°(d) using Eq.(1).
_f dr'(E —w“’)(r—r’)”. (25) Figure 2 shows the reduced excess chemical potential as a
@ Ny function of the diameter of the testing particle at various

As discussed in our previous works? Eq. (25) can be average densities. . .
solved numerically using the Picard-type iterative method. ~ From the excess chemical potential calculated from the

evaluated using Gauss formulas because they are impropghemical potential and the density of the corresponding bulk
integrals. fluid from

Mayt KeT In pay=up*+kgT In p, (28
IV. RESULTS AND DISCUSSION . . .
and an expression for the excess chemical potential of the

We have performedNVT simulations for neutral hard pylk fluid s from the Carnahan—Starling equation of
spheres of uniform size confined in a hard rectangular chansiate&®

nel with fixed heighth=9 and lengthl=14. The two-

dimensional density profiles and the chemical potentials

within the channel are calculated at the following averaged

reduced densitiess, o3=0.42, 0.53, 0.66, 0.72, 0.78, 0.87, 1L.E-04

3
and 0.93. Here the averaged density within the channel is pavo
defined as ——0.42

N 1.E-05
P TH L, - o
2]
where N is the number of particles used in the simulation 5 —4—0.66
L=(I+1)o, H=(h+1)o, andL, is the length of the simu- = | g ¢
. . . . = E
lation box in thez direction. = =072
The reduced excess chemical potential of a hard sphereg
in the microchannel is related to the probability of successful & =078
insertionsp by 1.E-07 4 087
3 ——0.
u=—kgTInp. (27
In the original particle-insertion method proposed by 093
Widom !’ the test particle is identical to the real particles. In 1.E-08 +——r—r—r—er—————r—r——t——r—r—
Table |, we present the probabilities of successful insertion 0 2 4 6 8§ 10 12 14 16 18
using Widom’s method at various average densities in the )
rectangular channel. Figure 1 presents the standard devia- Number of block operations

tions in evaluation of these probabilities calculated from a IG. 1. The standard deviations in sampling the probability of successful

error es;imation method pI’Q_pOSGd by FlyV_bjerg_ an_dparticle insertion using Widom’s method. The mean values of the insertion
Peterser! Because the probability of successful insertion isprobabilities are listed in Table I.
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Bu @)

FIG. 2. The excess chemical potentials of testing particles of various diam-

eters in a hard-sphere fluid confined in a rectangular channel witl4 and =

h=9. The testing sphere is identical to the real hard sphere @her 1. 3
[N

7(8-97+37%)

(1-n)°
In Eq. (29), n=(w/6)p,o is the packing fraction of hard
spheres. Table | presents the extrapolated excess chemical
potentials ad= o, the corresponding bulk densities, and the
R-squared values of the polynomial fit using Eij).

Figures %a) and 3b) show the normalized denSity Pro- giG. 3. The normalized density profilgs(x,y)/py, of a confined hard-
files p(x,y)/ pp within the microchannel at two different av- sphere fluid in the rectangular channel as in Fig. 2 flo¥iT simulation.(a)
eraged densitieg1,,0°=0.42 and 0.93, respectively, corre- pao°=0.42,(b) p,o*=0.93. Because of the symmetry of the rectangular
sponding to the lowest and highest densities investigated iphannel, the density profile in a quarter of the microchannel is presented.
this work. At the low density, the distribution of hard spheres
within the microchannel is relatively uniform. The densities
near the walls and corners are comparable to the contasemiquantitative near the freezing of hard spheres. The poor
values of the radial distribution function for uniform hard performance of the DFT at high density is probably due to
spheres at the same packing density. However, at the higihe inaccuracy of the fundamental measure theory for highly
density, the local densities at the corners are about two order®nfined systems. The failure of the fundamental measure
of magnitude larger than those in the middle, indicating thatheory at high density is because its Helmholtz energy func-
the particles are highly localized near the walls and cornerdional diverges in the O-dimensional limit. A possible im-
Figures 4a) and 4b) show the density profiles at the mid- provement of the density functional theory is by imposing
plane alongk andy directions &/c=7 andy/c=4.5). Here the exact free energy in the zero-dimension limit as proposed
the average densities are identical to those shown in Fig. &y Tarazon&®
While the distribution of hard spheres at the midplane is We have applied the DFT theory to calculate density
invariant in x or y directions for the low-density case, re- profiles in microchannels of other geometry and compared
markable difference is observed for the high-density casewith simulation results from the literature. The structure of
indicating the effect of confinement is enhanced as densithard-sphere fluid confined in a corrugated channel was in-
increases. vestigated using GCMC simulation by Schoen and

Figures %a) and 3b) compare the normalized local Dietrich!® In Fig. 6 we sketch the corrugated hard channel
number density profiles near the wall/g=0.0625) and at system investigated in this work. The corrugated channel is
the midplane y/o=4.4875) calculated from the Monte composed of periodic arrays of parallel hard wedges. The
Carlo simulation to those predicted from the density func-corrugated substrate is characterized by the dihedral gngle
tional theory. While the agreement between theory and simuef the grooves, the lateral periodicity lengsy in the x di-
lation is excellent at low average density, the accuracy of theection and distanc8, between two opposite substrates. Fig-
theory deteriorates as density increases and it becomes onlye 7 compares a slice of the density distribution evaluated

(b)
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FIG. 4. The density profiles at the midplane of the rectangular channel from
Monte Carlo simulation. Here the lines correspond to the density profiles at Xlo

h=4.5 and the points to those lat 7. The rectangular channel is the same

as that shown in Fig. 2. FIG. 5. (a) Density distributions of hard spheres near the wall of the rect-

angular channel calculated from Monte Carlo simulatipaints and from
DFT (lines). (b) Same ada) but at the midplane.

from the DFT and from the simulatidhat x/o=0.36 and a
reduced bulk density of 0.7016 in the hard corrugated chan-
nel for y=7/2. In this case, the agreement between the thesphere case, the rectangular channel has the dimension of
oretical prediction and molecular simulation is excellent.=9 andl=14. In contrast to the density profiles of confined
Figure 8 shows an overall local density profile in tkey neutral hard spheres as shown in Fig. 3, the local number
plane calculated from the improved FMT. Similar to the dis-densities at the corners are much smaller than those near the
tribution of hard spheres in rectangular channels, the densityalls. The density distribution of associating hard spheres in
profile exhibits peaks along the corners and on each side dhe channel is determined by two competing effects: associa-
the corrugated walls. tion and excluded volume. Because confinement restricts the

The DFT was also used to investigate the effect of interassociations, the particles are depleted from the walls or cor-
particle association on density distributions. Figure 9 showsers. On the other hand, the excluded volumes of the hard
the density profile of a four-sited associating hard-spherspheres leads to the accumulation of particles near a hard
fluid at temperature TF=8 and bulk density p,o®  wall. While the former takes place only in associating fluids,
=0.7016 in a rectangular channel. Here the reduced tenthe latter appears in both neutral and associating hard
perature is defined a* =kgT/e, wheree is the site bond- spheres. Finally, Fig. 10 shows the density profiles of four-
ing energy. In this calculation, the volume paramétén the  sited associating hard spheres near the confining walls. As
SAFT theory is set to be 1.484910 “o3. As for the hard-  expected, the packing effect dominates the density distribu-
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FIG. 6. Structure of the hard corrugated channel consisting of two opposite

hard wedges of side leng8 = 100, S, =120 and dihedral angle=m/2 in
the (x,y) plane.

FIG. 8. The three-dimensional density profile for a hard-sphere fluid con-
tion at low bonding energyequivalently low 1T*) and the fined by the hard corrugated channel as shown in Fig. 5.

association effect is important at high binding energy.

V. CONCLUSIONS The chemical pote_ntial of hard sphgres in a confined
geometry can be effectively calculated using an extension of
We have appliedNVT ensemble Monte Carlo simulation widom’s particle insertion method where the insertion prob-
and a newly proposed density functional theory to investigatapility is extrapolated from those for smaller particles. It
ing the structures of confined spherical particles in rectangumight be interesting to use tHéV T ensemble for studying
lar and corrugated microchannels. We find that the densityhe structural ordering of spherical particles in a confined
distribution of particles within microchannels is Stl’Oﬂg'y af- geometry_ While most previous app"cations of DFT for in-
fected by interparticle association and the geometry of conhomogeneous fluids have been limited to systems of one-
finement, especially at high densities. The prediction of dengimensional symmetry, this work demonstrates the feasibility
sity profiles from the density functional theory agrees wellof the application to multidimensional systems. Although

with simulation results for neutral hard spheres except neagimilar applications had been reported for neutral hard
the freezing point.

2.5

p(0.36,y/6)c°

0.5 1

y/o
FIG. 7. Density distribution of hard spheres in the hard corrugated channeFlG. 9. Density distribution of a four-sited associating hard-sphere fluid in a

at x/0=0.36 and bulk density,o*=0.7016. Here the simulation results rectangular channel with=14 andh=9 at bulk densityp,o*=0.7016 and
are from Schoen and DietridiiRef. 10. reduced temperature T = 8.
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