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The 𝑛th virial coefficient for a hard-sphere system is expressed as the sum of 𝑛2 and a remainder. When 𝑛 ≥ 3, the
remainders of the virials can be accurately expressed with Pade-type functions of 𝑛. The maximum deviations
are only 0.039–0.053%, which are much better than the existing approaches. By using the predicted virials,
the compressibility factors of the hard-sphere system can be predicted very accurately in the whole stable fluid
region, and those in the metastable fluid region can also be well predicted up to a packing fraction of 0.545. The
simulated 𝐵7 and 𝐵10 are found to be inconsistent with the other known virials, and thus they are refined to be
53.2467 and 105.042, respectively.

PACS: 64. 10. +h, 05. 70. Ce, 05. 20. Jj

Despite its simple intermolecular potential, the
hard-sphere system captures some typical phase be-
havior features of real systems, such as stable flu-
ids, metastable fluids, solids, glass states, and random
close-packed states,[1−3] and thus it is commonly used
as a reference system in constructing thermodynamic
or statistical mechanics models for real systems.[4,5]

The virial series expansion for the hard-sphere sys-
tem is typically expressed as

𝑍 =
𝑃𝑉

𝑅𝑇
=

∞∑︁
𝑛=1

𝐵𝑛𝜂𝑛−1

= 1 + 𝐵2𝜂 + 𝐵3𝜂
2 + 𝐵4𝜂

3 + 𝐵5𝜂
4 + · · · , (1)

where 𝑍, 𝑃 , 𝑉 , 𝑇 , 𝑅, 𝜂 and 𝐵𝑛 are the compress-
ibility factor, pressure, molar volume, temperature,
Avogadro constant, packing fraction and the 𝑛th virial
coefficient reduced by the excluded volume of hard-
spheres, respectively. For the hard-sphere system,
the first four virial coefficients (𝐵1 − 𝐵4) can be de-
rived analytically,[6] and their values are 1, 4, 10
and 18.36476838· · ·, respectively. The other virial
coefficients need to be calculated numerically, where
the fifth to tenth virials have been determined us-
ing Monte Carlo simulations (Table 1).[7,8] If only
these virials are used to predict the compressibility
factors of a pure fluid, the maximum deviation from
the simulated results in the isotropic region is over
2%, which is inadequate for accurate theoretical or
practical research. In addition, we found that there
is obvious inconsistency among the known values of
the first ten virials. In order to obtain accurate es-
timation of higher-order virials, various approaches
have been proposed, e.g., Pade approximants,[9] Levin
approximants,[10] EOS using simulated compressibil-
ity factors,[11] and many other approaches.[9] Most of

these approaches are capable of accurate or reasonable
prediction of the closest one or two higher-order virials
that are not used in parameterization, but the accu-
racy of predicted virials decreases rapidly as the or-
der increases (Fig. 1).[7−9,11−19] Additionally, the ap-
proaches mentioned above also have other problems.
For example, the commonly used Pade approximants
often overestimate high-order virials not used in pa-
rameterization. If we extract high-order virials from
simulated compressibility factors, the deviation will
increase rapidly with increasing order, because high-
order virials are very sensitive to the deviations of
compressibility factors.

Table 1. Simulated values and uncertainties of 𝐵5 − 𝐵10. The
uncertainties in brackets are given the last significant num-
ber(s).

𝑛
𝐵𝑛

Labik et al.[7] Clisby and McCoy[8]

5 28.22445(10) 28.2245(3)
6 39.81550(36) 39.81515(93)
7 53.3413(16) 53.34442(37)
8 68.540(10) 68.538(18)
9 85.80(8) 85.813(85)
10 105.78(39)

In order to obtain reliable high-order virials that
are adequate to construct a highly accurate EOS for
a hard-sphere fluid, one has to resort to other ap-
proaches. In this work, we report a class of very
accurate approaches for the prediction of high-order
virials, and correct the inconsistency among the first
to tenth known virials.

It is found that there is a well-behaved relation-
ship between the known virials and their orders, which
can be used to correlate or predict high-order virials.
The known virials 𝐵1 − 𝐵10 can be roughly approxi-
mated by 𝑛2, and the remainders only vary from 0 to
6 (Fig. 2). For this reason, any 𝑛th virial coefficient
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can be expressed as

𝐵𝑛 = 𝑛2 + ∆𝐵𝑛, (2)

where ∆𝐵𝑛 is the remainder of the 𝑛2 approximation.
Among the remainders, ∆𝐵1 = ∆𝐵2 = 0, and the
others behave as a monotonically increasing function
of 𝑛.

Fig. 1. Comparison of the remainders from analytical ex-
pression and computer simulation with those estimated
by different approaches. Solid and opened symbols denote
the simulated (or analytical) values and the estimated val-
ues, respectively. The estimated values are only given for
𝑛 ≥ 7.

As can be seen from Fig. 2, the value of 𝐵10 is ob-
viously inconsistent with the overall trend of 𝐵3−𝐵9.
Furthermore, 𝐵7 is also slightly inconsistent with
other virials. Since ∆𝐵𝑛 ≪ 𝑛2, the inconsistency is
greatly weakened in the 𝐵𝑛 − 𝑛 diagram. This may
be the principal reason why there is no report on this
inconsistency. We found that the deviations due to
the inconsistency are much larger than the uncertain-
ties given by the original authors.[7,8] One may think
that the positive deviations of 𝐵7 and 𝐵10 from the
overall trend of other virials may arise from the sin-
gularity of the hard-sphere system found in the fluid-
solid transition region (which has a positive contribu-
tion to 𝑍 and 𝐵𝑛). However, if the singularity has
a perceptible contribution to 𝐵7 and 𝐵10, it should
also have a comparable contribution to 𝐵8, 𝐵9 and
other virials, because the abnormality of 𝐵7 and 𝐵10

is too weak to explain the singularity. On the other
hand, there is excellent agreement between 𝐵3 − 𝐵6,
𝐵8 and 𝐵9, which is sufficient to rule out the singu-
lar contribution. In other words, the inconsistency
should come from the uncertainties of simulations.
The following points also support this conclusion: (1)
In the past fifty years, the simulated values of 𝐵7 vary
from 56.5 ± 1.6 [12] to 56.1 ± 2.5,[20] 53.7 ± 0.8,[21]

53.70 ± 0.33,[22] 53.54 ± 0.29,[14] 53.436 ± 0.090,[23]

53.3444 ± 0.0037 [8,24] and 53.3413 ± 0.0016,[7] where
some subsequently simulated values are not in the un-
certainty ranges of the older results. That is, the
uncertainty in simulated 𝐵7 has been underestimated
more than once. Nevertheless, the deviation of 𝐵7 due

to the inconsistency is still in the uncertainty ranges
of some simulated results, such as 53.54±0.29 [14] and
53.7±0.8.[21] (2) The uncertainty in 𝐵10 is very likely
underestimated. According to Labik et al.,[7] the ex-
pected error in 𝐵10 estimated by extrapolating the
latest (and also most accurate) values of 𝐵5 − 𝐵10 is
about ±1, which is much larger than the uncertainty
(±0.39) reported by Clisby and McCoy.[8,24]

Fig. 2. The remainder 𝐵𝑛 − 𝑛2 as a function of 𝑛.

On the other hand, the singularity in the fluid-
solid transition must have a perceptible contribution
to some virials, although we do not know its exact
range of order or its exact magnitude at the present
time. For convenience, we do not consider the singu-
lar contribution to 𝐵𝑛. In this way, we can assume
that the non-zero values of ∆𝐵𝑛 behave regularly as
a function of order. This assumption proves to be
valid if we are only interested in the high-order virials
that are necessary and sufficient to construct a highly
accurate EOS.

Table 2. Parameters from the constraints of 𝐵4 −𝐵6.

𝑏𝑖
𝑎𝑖

[1/1]𝐵 [1/2]𝐵 [2/1]𝐵

𝑎1 0.2937638× 10+0 0.2935558× 10+0 0.2934069× 10+0

𝑎2 0.4378624× 10−4

𝑏1 0.2059452× 10+1 0.2059063× 10+1 0.2058915× 10+1

𝑏2 −0.3068293× 10−3

We find that the non-zero remainders can be well
formulated with Pade-type functions of order:

∆𝐵𝑛 = [𝐿/𝑀 ]𝐵 =
1 +

∑︀𝐿
𝑙=1 𝑏𝑙(𝑛− 3)𝑙

1 +
∑︀𝑀

𝑚=1 𝑎𝑚(𝑛− 3)𝑚
,

(𝑛 ≥ 3), (3)

where [𝐿/𝑀 ]𝐵 is the approximant symbol for 𝐵𝑛.
In order to predict 𝐵7 and higher-order virials, only
𝐵3 −𝐵5 or 𝐵3 −𝐵6 can be used to constrain the ap-
proximants. It is found that the [1/1]𝐵 , [1/2]𝐵 and
[2/1]𝐵 type approximants can give accurate predic-
tion of 𝐵7 − 𝐵10. Since the uncertainties of virials
simulated by Labik et al.[7] are obviously smaller than
those of Clisby and McCoy,[8] we use the results of
Labik et al.[7] to constrain the three approximants.
The parameters are given in Table 2.

086404-2

http://cpl.iphy.ac.cn


CHIN. PHYS. LETT. Vol. 26,No. 8 (2009) 086404

Table 3. Parameters from the constraints of 𝐵4 −𝐵*
9 . 𝐵7 takes the modified value.

𝑏𝑖/𝑎𝑖 [2/2]𝐵 [2/3]𝐵 [3/2]𝐵 [3/3]𝐵
𝑎1 0.2890695× 10+0 0.9356564× 10−1 0.9341709× 10−1 −0.6817809× 10−1

𝑎2 −0.1275538× 10−2 −0.5866498× 10−1 −0.5867900× 10−1 −0.7393487× 10−1

𝑎3 −0.8716818× 10−5 0.9482139× 10−2

𝑏1 0.2054580× 10+1 0.1859074× 10+1 0.1858925× 10+1 0.1697400× 10+1

𝑏2 −0.9245081× 10−2 −0.4117940× 10+0 −0.4120705× 10+0 −0.7127892× 10+0

𝑏3 0.6109191× 10−4 0.6651676× 10−1

Table 4. 𝐵5 −𝐵16 predicted from different approximants. Underlined values: known virials (simulated or refined).

𝑛 [1/1]𝐵 [1/2]𝐵 [2/1]𝐵 [2/2]𝐵 [2/3]𝐵 [3/2]𝐵 [3/3]𝐵
5 28.22445 28.22445 28.22445 28.22445 28.22445 28.22445 28.22445
6 39.81565 39.81550 39.81550 39.81550 39.81550 39.81550 39.81550
7 53.24716 53.24670 53.24670 53.24670 53.24670 53.24670 53.24670
8 68.57598 68.57509 68.57509 68.57508 68.54000 68.54000 68.54000
9 85.83486 85.83345 85.83344 85.83343 85.83346 85.83346 85.80000
10 105.04398 105.04196 105.04196 105.04192 105.04197 105.04197 105.05767
11 126.21643 126.21373 126.21373 126.21367 126.21375 126.21375 126.22382
12 149.36107 149.35765 149.35765 149.35755 149.35767 149.35767 149.36685
13 174.48413 174.47994 174.47994 174.47981 174.47997 174.47997 174.48922
14 201.5901 201.58512 201.58511 201.58493 201.58515 201.58514 201.59482
15 230.68232 230.67651 230.6765 230.67626 230.67654 230.67653 230.68682
16 261.76329 261.75663 261.75662 261.75631 261.75667 261.75666 261.76765

The values of 𝐵7 predicted by the three approx-
imants are 53.2471596, 53.2467021 and 53.2467020,
respectively. Since [1/2]𝐵 and [2/1]𝐵 are constrained
by more virials, their results should be more reliable.
Considering the uncertainty of predicted 𝐵7 cannot be
better than those of 𝐵5 and 𝐵6 used in the parameter-
ization, the final result of 𝐵7 is taken as 53.2467 in this
work. The modified 𝐵7 agrees with that simulated by
Janse van Rensburg[14] (53.54 ± 0.29) and that care-
fully corrected by Kratky[21] (53.7 ± 0.8) within the
uncertainties. The modified 𝐵7 also agrees very well
with the predicted value of the Pade approximants
constrained by both simulated virials and highly ac-
curate compressibility factors.[16] Recently, Kolafa et
al.[11] obtained five values of 𝐵7 from highly accurate
EOS (53.08, 53.11, 53.33, 53.27, and 53.39). The av-
erage of the five values is 53.236, which is very close
to our modified 𝐵7.

The value of 𝐵10 can be refined using the known
𝐵3 − 𝐵9, where 𝐵7 takes the refined value. Five ap-
proximants are used in this work. Their parameters
are listed in Table 3, while the predicted values of
𝐵5 −𝐵16 are given in Table 4.

As can be seen from Table 4, the 𝐵10 values pre-
dicted from the eight approximants agree very well
with each other, and the maximum difference in 𝐵16

is only 0.01134. Considering the simulated uncertain-
ties of 𝐵5 −𝐵9 and the excellent consistency between
the approximants used in this work, 𝐵10 can be taken
as 105.042. This value is still in the uncertainty range
of 𝐵10

[8,24] estimated by Labik et al.[7] It is also very
close to the result (105) predicted from the highly ac-
curate EOS of Erpenbeck and Wood.[13] Recently, Ko-
lafa et al.[11] optimized five values of 𝐵10 (108, 108,
106, 106, 103) from accurate EOS, whose expectation
is 106± 2.0.[7] This result agrees well with our modi-
fied value.

The high-order virials of 𝑛 ≤ 100 predicted from

the eight approximants are presented in Fig. 3. It
is remarkable that the high-order virials predicted
from the eight approximants agree very well with each
other. The maximum relative deviations of predicted
𝐵5 − 𝐵9 are only 0.039% to 0.053%, which are ob-
viously within or very close to the uncertainties of
the most accurate simulated results. So far, none of
the existing approaches can reach such good accuracy.
The superiority of the present approaches is clearly
shown in Figs. 1 and 3.

The results above strongly suggest that the ap-
proaches above can be safely extrapolated far beyond
the order range of parameterization. Because of the
lack of accurate high-order virials (𝑛 > 10), it is im-
possible to clearly determine the applicable range of
order for each approximant. Nevertheless, the fol-
lowing facts are very useful for estimating the pos-
sible range of order: (1) The predominant contribu-
tion of order to 𝐵𝑛 can be well described by 𝑛2. (2)
As 𝑛 increases, ∆𝐵𝑛/𝐵𝑛 decreases very rapidly, e.g.,
∆𝐵25/𝐵25 < 1%, ∆𝐵50/𝐵50 < 0.27%. (3) The sim-
ulated values of 𝐵6 − 𝐵10 can be accurately repro-
duced by the simple approximants [1/1]𝐵 , [1/2]𝐵 and
[2/1]𝐵 . (4) The predicted high-order virials from the
eight approximants exhibit excellent consistency up
to very high order (𝑛 = 100). This strongly suggests
that ∆𝐵𝑛 can be accurately expressed by Pade-type
functions up to very high order. With these facts, the
highest valid order of the above approaches should be
not lower than 30. Such a conservative upper limit of
order is already much higher than those of the exist-
ing approaches, and is also enough for constructing a
highly accurate virial EOS.

With the known 𝐵1−𝐵10 and the high-order virial
coefficients (𝑛 ≥ 11) predicted from the Pade-type ap-
proximants, the truncated virial equation can be im-
proved systematically (Fig. 4). Apparently, the virial
equation truncated at 𝑛 = 13 is generally better than
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the well-known Carnahan-Starling (CS) equation[25]

in the stable fluid region. When the order increases
to 14, the truncated virial equation is much better
than the CS equation in the whole stable fluid region,
and only slightly worse than the CS equation in the
metastable fluid region.

Fig. 3. Predicted 𝐵𝑛−𝑛2 (𝑛 ≤ 100) as a function of order 𝑛.

Fig. 4. Deviations of predicted compressibility fac-
tors. The simulated data are taken from Erpenbeck and
Wood[13] and Kolafa et al.[11] The maximum deviation
of the ten-order virial equation in the metastable region
(𝜂 ≤ 0.545) is 5.0%, which is not shown in this figure.

We find that the contribution of higher-order terms
not used in truncated virial EOS can be well approx-
imated by adding a factor (1− 𝑐𝜂)−1 to the last term
(𝑐 = 3

√
2/𝜋). With this modification, the truncated

virial equations can be notably improved. For exam-
ple, the virial equation truncated at 𝑛 = 13 can be
modified as

𝑍 = 1 +
12∑︁

𝑛=2

𝐵𝑛𝜂𝑛−1 +
𝐵13𝜂

12

1− 𝑐𝜂
, (𝑐 = 3

√
2/𝜋). (4)

After this modification, the average and maximum
deviations of predicted compressibility factors reduce
from 0.060% and 0.41% to 0.024%, 0.16%, respectively
(Fig. 4). By continuously using the following relation

𝜂

1− 𝑐𝜂
=

1
𝑐

(︁ 1
1− 𝑐𝜂

− 1
)︁
. (5)

Equation (4) can be rewritten as

𝑍 = 1 +
11∑︁

𝑛=1

(︂
𝐵𝑛+1 −

𝐵13

𝑐12−𝑛

)︂
𝜂𝑛 +

𝐵13

𝑐11

𝜂

1− 𝑐𝜂
. (6)

For the derivation of the fugacity coefficient, Eq. (6)
is much more convenient than Eq. (4).

In conclusion, it is found that the first ten virial
coefficients 𝐵1−𝐵10 can be reasonably approximated
by 𝑛2, and the remainders of virials 𝐵𝑛’s (𝑛 ≥ 3) can
be expressed very accurately with Pade-type functions
of 𝑛. Eight Pade-type approximants give very close
results for the virials of 𝑛 ≤ 100. This is a strong
indication of the good reliability of the approximants.
In analyzing the remainders of the 𝑛2 approximation
for the first ten virials, we find that the simulated 𝐵7

and 𝐵10 are inconsistent with the other virials. Ac-
cording to the prediction of the approximants in this
work, they are modified as 53.2467 and 105.042, re-
spectively.

With the known and refined values of 𝐵2 − 𝐵10

and the predicted values of some higher-order virials,
the compressibility factors of the hard-sphere system
in the stable fluid region can be predicted very accu-
rately, and those in the metastable fluid region can
also be well predicted up to 𝜂 = 0.545. The truncated
virial EOS can be improved considerably by using the
constraint of the close-packed limit.
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