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A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin
(BSA) in aqueous electrolyte solution is developed based on the generalized Stokes–Einstein equation which
relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is
evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two
empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of
hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the
collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is
predicted. From the comparison between the predicted and experimental values we found that the sedimentation
coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective
diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-
core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good
agreement with available experimental data, while the hard sphere model is unable to describe the behavior of
diffusion due to its neglect of the double-layer repulsive charge–charge interaction between BSA molecules.

Introduction

The collective diffusion coefficients of charged protein in
aqueous electrolyte solutions are required for many biological
processes, such as membrane filtration, separation or sedimen-
tation. For example, in therapeutics and diagnostics, in order
to prevent disease, an important pathological event is the
separation of a biological solution into coexisting protein-rich
and protein-poor phases;1 In biochemical reactions, the degree
of separation, purity and yield of a particular protein is
influenced to a considerable extent by the properties of the
media, and the diffusion coefficient plays a significant role in
these properties. Moreover, it is crucial to have some knowl-
edge of the concentration dependence of the collective diffusion
coefficient for a wide range of volume fraction, because the
biological fluids in such process are concentrated solutions.2

However, the collective diffusion coefficient is studied much
less than it is needed, due to the difficulty both in theory and
experiment.

Experiment on the determination of diffusion coefficients of
globular proteins in aqueous solution is usually carried out
using dynamic light scattering (DLS). This method has been
used by Placidi and Cannistraro,3 and Meechai et al.4 to
measure the collective diffusion coefficient of BSA under
isothermal condition as a function of protein concentration
and in the presence of glycerol. However, due to the opacity of
the concentrated suspension and of multiple light scattering
effects, it fails at high volume fraction. Besides DLS, capillary
methods, porous barrier (membranes) methods or Gouy inter-
ferometric method may be used,5 but all of them are limited to
dilute solutions. For example, a capillary method based on a
principle of hydrodynamic stability was used by Anderson
et al.5 to determine the mutual diffusion coefficient of BSA as
a function of concentration in aqueous solutions of potassium
chloride.

In theory, the pioneering work done by Einstein6 used the
diffusion coefficient to describe the Brownian motion of an
isolated particle at infinite dilution solution. After that, the
friction coefficient of the particle which determines the beha-
vior of the diffusion coefficient at infinite dilute solution is
investigated by several researchers.7 For example, Booth7

developed a consistent theory for the friction coefficient by
macroscopic hydrodynamics, which does not agree with ex-
perimental data. Schurr8 proposed a theory considering both
the electric and the hydrodynamic forces. Although the results
from Schurr’s theory agree well with the experimental data, the
theory is not consistent. At low volume fraction, it is relatively
a little more complex to derive the expressions for the diffusion
coefficient. Batchelor9 and Felderhof10 separately developed a
generalization of Einstein theory, which combined hydrody-
namics with hard sphere interactions by the statistical methods.
They obtained the first order correction of the collective
diffusion coefficient with respect to the volume fraction of the
particles where the charge of the proteins is not included.
Petsev and Denkov11 further modified this theory by consider-
ing some well defined quantities such as particle radius, charge,
surface potential etc. At intermediate volume fractions (up to
0.2), the combined effects of electrostatic repulsion and hydro-
dynamic interactions become important. By determining the
electrostatic repulsion from the thermodynamically consistent
Rogers–Young scheme,12 Genz and Klein13 studied various
trends for the collective diffusion coefficients of charged
spheres. By using a dynamic mode-coupling theory of diffusion
in binary fluid mixtures, a relation between collective diffusion
coefficient and viscosity in suspensions was obtained and can
be used to correlate the experimental data.14

An alternative way to predict the collective diffusion coeffi-
cients of charged globular proteins in aqueous electrolyte
solutions is to use the generalized Stokes–Einstein equation.
In this method, the sedimentation coefficient and the osmotic
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pressure must be known in advance. Many theoretical works
have been done to determine the sedimentation coefficient of
colloidal suspensions. There are two empirical correlations
available for the sedimentation coefficient of hard sphere colloi-
dal suspensions: one is used for Brownian hard spheres and
another was proposed by Happel and Brenner15 using a cell
model for ordered suspensions of sphere. The osmotic pressure
can be calculated by the integral equation, Poisson-Boltzman
(PB) cell model16 or the free-solvent model.17 The integral
equation may be based on the Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory18 or Yukawa potentials,19–22 using
the hypernetted chain approximation or mean spherical approx-
imation (MSA). The advantage of MSA is that it can give an
analytical solution and an explicit equation of state (EOS).19 In
the PB cell model,16 the osmotic pressure includes the contribu-
tions from electrostatic interactions, London–van Der Waals
forces and configurational entropy. The electrostatic interac-
tions are accounted for by a Wigner–Seitz cell approach invol-
ving a numerical solution of the nonlinear PB equation. The
free-solvent model was developed by Yousef et al.,17 in which
hydration and salt binding are assumed to be dominant factors
for non-ideality and the average solute–solvent and microion–
solute interactions are considered.

The purpose of this work is to establish a predictive method
for the concentration dependence of the collective diffusion
coefficient as a function of the main physicochemical condi-
tions. We investigate the collective diffusion coefficient of
bovine serum albumin (BSA) in aqueous electrolyte solution
by means of the generalized Stokes–Einstein equation, where
the required concentration dependence of the osmotic pressure
is described by the MSA solution of the hard-core two-
Yukawa potential.

Theory

The generalized Stokes–Einstein equation15 relates the collec-
tive diffusion coefficient of proteins with the osmotic pressure
and the sedimentation coefficient for the whole range of
volume fractions, and for any interparticle potential. Its basis
is that the driving force underlying diffusion is thermodynamic
in origin. In the dispersion there exists a thermodynamic force
acting on the particles. Combining the thermodynamic force,
the flux of particles, Fick’s law and the expression for the
mobility, one can obtain the generalized Stokes–Einstein equa-
tion.15 It can be written as

DcðfÞ ¼ D0KðfÞ
4pR3

p

3kBT

@PðfÞ
@f

" #
ð1Þ

where D0 is the collective diffusion coefficient at infinite dilu-
tion, K(f) is the sedimentation coefficient, Rp is the radius of
the globular protein, kB is the Boltzmann constant, T is the
absolute temperature,P(f) is the osmotic pressure and f is the
volume fraction of protein. To employ eqn. (1) to calculate the
collective diffusion coefficient, we need the knowledge of the
concentration dependence of osmotic pressure and the sedi-
mentation coefficient.

Osmotic pressure for BSA solution

In this paper the charged BSA-electrolyte aqueous solution is
considered as a pseudo one-component system, and water
molecules are treated as a continuous medium with dielectric
constant D. The interactions between charged BSA macromo-
lecules are modeled as a hard-core two-Yukawa potential, i.e.,

uðrÞ ¼ 1 ros
udisðrÞ þ uccðrÞ r � s

�
ð2Þ

where udis(r) and ucc(r) represent, respectively, the dispersion
interaction and the double-layer repulsive charge–charge inter-

action between charged BSA molecules. The dispersion inter-
action can be expressed as a Yukawa potential

udisðrÞ ¼ � e exp½�lðr=s� 1Þ�
r=s

ðr4sÞ ð3Þ

where e is the dispersion energy parameter, s is the hard-sphere
diameter of a BSA molecule, and l is the range parameter.
Because the Lennard-Jones potential is the best potential for
the dispersion interaction and when l ¼ 1.8, the Yukawa
potential yields results comparable with those obtained from
Lennard-Jones potential,23 we adopt l ¼ 1.8 in this work. The
value of e is taken from Lin et al.20 and the hard-sphere
diameter of a BSA molecule is the hydrodynamic particle
diameter taken from Anderson et al.5 and they have values
of e/kB ¼ 91.3 K and s ¼ 7.20 nm, respectively.
The double-layer repulsive charge–charge interaction be-

tween BSA molecules can be also described using the Yukawa
potential

uccðrÞ ¼
z2pe

2 exp½�kðr� sÞ�
Drð1þ ks=2Þ2

ðr4sÞ ð4Þ

where zp is the BSA charge number, e is the charge of an
electron, and k is the Debye screening parameter, which is
determined by

k2 ¼
X
i

rie
2z2i

DkBT
ð5Þ

where ri and zi are the number density and the valence of
microion i, respectively. Eqn. (4) was deduced from the classi-
cal DLVO theory. Comparing eqn. (4) with eqn. (3), we can
obtain the Yukawa parameters for the double-layer repulsive
charge–charge interaction between BSA molecules.

e0 ¼ �
z2pe

2

sDð1þ ks=2Þ2
and l0 ¼ ks

Using McMillan-Mayer solution theory, the osmotic compres-
sibility factor Z of aqueous BSA-electrolyte solutions can be
decomposed according to the interaction potential between
BSA molecules

Z ¼ P
rpkBT

¼ ZDonnan þ Zhs þ Zdis þ Zcc ð6Þ

where rp is the number density of BSA molecules. The super-
scripts Donnan, hs, dis, and cc, represent the contributions of
the Donnan effect, hard sphere repulsion, attractive dispersion,
and double-layer repulsive charge–charge interactions, respec-
tively.
In BSA-electrolyte solution, to maintain electro-neutrality

and equilibrium, the concentrations of micro ions on both sides
of a membrane will be unequal, which may bring additional
osmotic pressure and is called the Donnan effect. The con-
tribution of Donnan effect to osmotic compressibility factor
ZDonnan can be expressed as

ZDonnan ¼ (rinþ þ rin� � routþ � rout� )/rp (7)

where rp, r1 and r� are the number densities of protein, micro
cation, and micro anion, respectively. In eqn. (7) the super-
scripts in and out represent the protein side and the microion
side of the membrane, respectively.
The equations of electro-neutrality and the equal ionic

concentration products on both sides of the membrane can
be expressed as

zprp þ z1r
in
þ þ z�r

in
� ¼ 0 (8)

z1r
out
þ þ z�r

out
� ¼ 0 (9)

(rinþ)
|z�| (rin�)

z1 ¼ (routþ )|z�| (rout� )z1 (10)
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where zp, z1 and z� are the charge numbers of protein, micro
cation, and micro anion, respectively.

The hard sphere repulsion contribution Zhs can be obtained
from the Carnahan–Starling equation

Zhs ¼ 1þ fþ f2 � f3

ð1� fÞ3
ð11Þ

where f is the packing fraction, i.e.,

f ¼ prps
3/6 (12)

Here s is the hard-sphere diameter of a BSA molecule, which

has a value of 7.20 nm.23 If we know the protein concentration

Cp, then the volume fraction can be calculated from f¼ Cpvs
3/

s3dry, where v and sdry(¼ 2.69 nm)16 are the specific volume and

dry protein particle diameter, respectively.
The dispersion and the double-layer repulsive charge–charge

interaction contributions to the osmotic compressibility factor
Z can be obtained by solving Ornstein–Zernike (OZ) integral
equation with proper closures. There are many closure rela-
tionships available, but only the hypernetted-chain (HNC),
Rogers–Young closure12 and the mean spherical approxima-
tion are more popular. Although the former two closures are
more accurate, they should be solved numerically using Four-
ier transforms and this limits their applications. The mean
spherical approximation (MSA) is the most widely used closure
because an analytical solution is available for this approxima-
tion. There are two methods to establish the two-Yukawa
equation of state based on MSA. One is to sum the infinite
order expansion of the Duh and Mier-y-Teran EOS19 twice
directly. Another is based on Baxter–Wertheim factorization of
the OZ equation for one-component and the w-Yukawa case
by using MSA. The former is simpler in mathematics, while the
latter is much stricter in theory. For simplicity, the former is
adopted in this work to calculate the osmotic pressure of BSA-
electrolyte aqueous solution. By differentiating excess Helm-
holtz free energy with respect to the volume fraction f, the
dispersion and the double-layer repulsive charge–charge inter-
action contributions to the compressibility factor Z can be
expressed as

Zdis þ Zcc ¼ �f be
f0

@a0
@f
� a0@f0

f0@f

� �

þ l3

6f
FðxÞ � FðyÞ � ðx� yÞ dFðyÞ

dy

� �

� l3

6

@x

@f
dFðxÞ
dx

� dFðyÞ
dy

� �
� @y

@f
ðx� yÞd

2FðyÞ
dy2

� �
ð13Þ

where

FðxÞ ¼ � 1

4
lnð1� 2xÞ � 2 lnð1� xÞ � 3

2
x� 1

1� x
þ 1 ð14Þ

x ¼ (1 þ lc)we/(l2kBT) (15)

y ¼ wce/(lkBT) (16)

a0 ¼ L(l)/[l(1 � f)]2 (17)

f0 ¼ [exp(�l)L(l) þ S(l)]/[l3(1 � f)2] (18)

w ¼ 6f/f2
0 (19)

c ¼
l2ð1� fÞ2ð1� e�lÞ � 12fð1� fÞ 1� l

2� 1þ l
2

� �
e�l

� �
e�lLðlÞ þ SðlÞ

ð20Þ

L(l) ¼ 12f[(1 þ f/2)l þ 1 þ 2f] (21)

S(l) ¼ (1 � f)2l3 þ 6f(1 � f)l2 þ 18f2l � 12f(1 þ 2f)
(22)

Sedimentation coefficient

Sedimentation coefficient is a key quantity for the prediction of
mutual diffusion coefficient for colloidal particles. The sedi-
mentation of charged spheres is affected by the influence of
colloidal force on hydrodynamic interactions. It can be en-
hanced by attractive colloidal interaction and slowed down by
repulsive interaction at a given volume fraction. For electro-
statically stabilized BSA, if electrolyte concentration in solu-
tion is not high (as the case in this study), the interaction
between two BSA molecules is repulsive and the sedimentation
coefficient always decreases as the volume fraction increased.
For a disordered suspension of hard spheres, the following

equation gives an accurate sedimentation coefficient15

K(f) ¼ (1 � f)6.55 (23)

Another analytical expression for the sedimentation coeffi-
cient was developed by Happel and Brenner15 based on a cell
model for ordered suspensions of spheres. It is given by

KðfÞ ¼
1� 3

2
ðfÞ1=3 þ 3

2
ðfÞ5=3 � f2

1þ 2
3ðfÞ

5=3
ð24Þ

In this paper both expressions are used to verify which one is
more suitable for the prediction of the mutual diffusion
coefficient for BSA when coupled with eqn. (6) via the general-
ized Stokes–Einstein equation.

Results and discussion

The collective diffusion coefficient of BSA in aqueous electro-
lyte solution is investigated at selected values of temperature,
pH, ionic strength, and BSA concentration. The values of the
parameters used in the calculation of the collective diffusion
coefficient are collected and listed in Table 1. It should be
pointed out that in Table 1, the net charges of BSA at pH 7.4,
I ¼ 0.15 mol L�1 and pH 4.7, I ¼ 0.1 mol L�1 are approxi-
mated as �20.4 and þ4.5, respectively, according to the work
of Vilker et al.24 Since the net charge of BSA at pH 7.4 and I ¼
1.5 mol L�1 is not available in the literature, its value is
determined from the reduced light-scattering intensity data4

at the same condition.
Even though we know from the work of Lin et al.20 that the

hard-core two-Yukawa model with MSA closure is able to
predict the osmotic pressure of aqueous BSA solution with
good accuracy at various values of pH and ionic strength, we
need to check the performance of the hard-core two-Yukawa
model for the derivative of osmotic pressure with respect to the
volume fraction since the collective diffusion coefficient
is strongly dependent on qP(f)/qf. In Fig. 1, we compare

Table 1 Parameters used to evaluate collective mutual diffusion

coefficient for aqueous BSA solution

Parameter Value Ref.

Mp 66 210 g mol�1 4

Rp 3.60 nm 5

v 0.734 cm3 g�1 16

l 1.8 20

e/kB 91.3 K 20

zp �20.4 at pH ¼ 7.4 24

þ4.5 at pH ¼ 4.7 24

�15.1 at pH ¼ 6.5, I ¼ 0.1 mol L�1 5

�6.3 at pH ¼ 6.5, I ¼ 0.001 mol L�1 5

�45 at pH ¼ 7.4, I ¼ 1.5 mol L�1 4
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qP(f)/qf calculated from the hard-core two-Yukawa model
with those from static light scattering experiments. The results
from the normalized hard-sphere virial expansion4 are also
plotted in Fig. 1. As can be seen from Fig. 1, the values of
qP(f)/qf are dependent on BSA concentration, pH and ionic
strength. The two-Yukawa model with MSA closure predicted
the behavior of qP(f)/qf accurately over a wide range of
volume fraction, while the hard-sphere virial expansion is
unable to predict the pH and ionic dependence of qP(f)/qf
due to its neglect of intermolecular electrostatic interactions.

In Figs. 2–6 we predict the collective diffusion coefficients of
aqueous BSA solutions using the hard-core two-Yukawa mod-
el coupled with the two sedimentation coefficient equations. In
order to decide which one is more accurate in the prediction of
the collective diffusion coefficients, the experimental data
available in the literature are also included in Figs. 2–6. It
should be pointed out that the experimental diffusion coeffi-
cients in Figs. 2,3,6 and 7 are determined using the dynamic
light scattering method,4 and those in Figs. 4 and 5 are
measured using a simple capillary5 method based on a principle

of hydrodynamic stability and the quasi-elastic light scattering
spectroscopy,25 respectively. From these figures one can see
that the two-Yukawa model coupled with sedimentation coef-
ficient eqn. (23) of the disordered suspension of hard spheres
gives satisfactory predictions when compared with the corre-
sponding experimental data at different values of pH, ionic
strength and protein concentration. When coupled with sedi-
mentation coefficient eqn. (24) of the ordered suspension of
hard spheres, the theory substantially underestimates the col-
lective diffusion coefficients of aqueous BSA at low to moder-
ate protein concentrations and overestimates them at high
volume fractions. The average relative deviations of correla-
tions for collective diffusion coefficient are 7.96% and 33.5%
when sedimentation coefficient correlations for the disordered
(eqn. (23)) and ordered hard-sphere suspension (eqn. (24)) are
used, respectively.
At lower value of pH (see Figs. 2 and 3), the collective

diffusion coefficient decreases with protein concentration
monotonously at ionic strength I ¼ 0.1 mol L�1. But at pH 7
and I ¼ 0.1 or 0.15 mol L�1, there is a maximum on the curve
of reduced collective diffusion coefficient as a function of
volume fraction, as shown in Figs. 4–6. The pH has a great
effect on the curve shape of reduced collective diffusion coeffi-
cient as a function of volume fraction because pH regulates the

Fig. 1 Reduced light-scattering intensities for BSA solutions at T ¼
295.15 K in the form KcM/DRy ¼ (M/RT)dP/dc, where c is the protein
concentration. The solid squares, solid triangles and solid circles
represent experimental data4 at pH 4.7 and I ¼ 0.1 mol L�1, pH 7.4
and I ¼ 0.15 mol L�1, and pH 7.4 and I ¼ 1.5 mol L�1, respectively.
The solid lines are predicted results from the hard-core two-Yukawa
model and the dash line is the normalized hard-sphere virial expan-
sion:4 (M/RT)dP/dc ¼ 1 þ 8f þ 30f3 þ 72f3.

Fig. 2 Reduced collective diffusion coefficient of BSA in aqueous
NaOAc solutions at pH 4.7, I ¼ 0.1 mol L�1 and T ¼ 295.15 K. The
solid triangles represent the dynamic light scattering experimental data
taken from Meechai et al.,4 the solid curve is calculated from the hard-
core two-Yukawa model coupled with the sedimentation coefficient
eqn. (23) for the disordered suspension of hard spheres, and the dashed
curve is calculated from the two-Yukawa model coupled with that for
the ordered suspension of hard spheres (eqn. (24)).

Fig. 3 Reduced collective diffusion coefficient of BSA in aqueous
NaCl solutions with pH 4.7, I ¼ 0.1 mol L�1, and T ¼ 293.15 K. The
solid triangles represent the dynamic light scattering experimental data
taken from Placidi and Cannistraro.3 The curves have same meanings
as in Fig. 2.

Fig. 4 Reduced collective diffusion coefficient of BSA in aqueous KCl
solutions at pH 6.5 and T ¼ 277.15 K. The solid triangles and opened
circles represent the experimental data measured by Anderson et al.5

using a simple capillary method based on a principle of hydrodynamic
stability at I ¼ 0.001 and 0.1 mol L�1, respectively. The curves have
same meanings as in Fig. 2.
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BSA charge and thus the magnitude of the Coulomb interac-
tion, which is further screened by the ions in solution. Fig. 4
indicates that the maximum on the curve becomes more
pronounced at lower salt concentration. The difference be-
tween the volume fraction dependence of the collective diffu-
sion coefficient at different ionic strengths reflects the influence
of thermodynamic interaction on Dc. The hard-core two-
Yukawa model coupled with the sedimentation coefficient
eqn. (23) for the disordered suspension of hard spheres repro-
duces these differences quite well owe to its good description of
the thermodynamic behavior of aqueous BSA solution. Com-
pared to the Poisson–Boltzmann cell model,16 the advantage of
the present method is that it has an analytical expression for
the collective diffusion coefficient and this makes calculation
much easier. The only shortage of the present method is that
we should know the net charge number on the protein at a
specific solution condition in advance.

In Fig. 7, we compare the results from the hard-core two-
Yukawa model with experimental data under three different
solution conditions. Also plotted in Fig. 7 are the results from
the hard sphere expression found by Al-Naafi and Selim,26

which accurately describe their experimental data on the collec-
tive diffusion coefficients of hydrophobic silica macro-spheres:

Dc

D0
¼ KðfÞ ½ð1þ 2fÞ2 þ ðf� 4Þf3�

ð1� fÞ4
ð25Þ

where K(f) is calculated from eqn. (23). It is quite clear in Fig. 7
that the reduced collective diffusion coefficients of BSA in the
three electrolyte solutions exhibit different trends as the volume
fraction increases, and the agreement between theoretical pre-
dictions from hard-core two-Yukawa model coupled with eqn.
(23) and experimental data is good. The experimental Dc/D0

values deviate widely from the hard-sphere predictions from
eqn. (25). The hard-sphere calculations can only semi-quantita-
tively describes the collective diffusion coefficient data at I ¼ 1.5
mol L�1, where the BSA predominantly screened by the small
ions. The discrepancies at the two ionic strengths not high
enough reflect that there surely exists a double-layer repulsive
charge–charge interaction between BSA molecules. From Figs.
2–7, one can see that the present method, which completely
neglects the influence of electrostatic interaction on sedimenta-
tion coefficient, works well over a wide range of charge and ionic
strengths. This demonstrates that the two-Yukawa model is
suitable to describe qP(f)/qf as a function of volume fraction
and the electrostatic interactions has little effect on sedimenta-
tion coefficient of BSA in electrolyte solutions.

Conclusions

We have proposed a new method to predict collective diffusion
coefficient of bovine serum albumin (BSA) in aqueous electro-
lyte solution based on the generalized Stokes–Einstein equa-
tion. The hard-core two-Yukawa model with mean spherical
approximation is introduced to evaluate the influence of
thermodynamic interactions on collective diffusion coefficient.
Both sedimentation coefficient equations for the disordered
and ordered suspensions of hard spheres are used to calculate
the hydrodynamic effect. From the comparison with available
experimental data we conclude that the hard-core two-Yukawa
model coupled with the sedimentation coefficient equation for
a disordered suspension of hard spheres (eqn. (23)) is a good
theory to predict the collective diffusion coefficient of BSA in
electrolyte solutions. In comparison, the hard sphere model
fails due to its neglect of the double-layer repulsive charge–
charge interaction between BSA molecules.
It is interesting to point out that using the proposed method

we can determine how the diffusion coefficient varies with
protein concentration from solution properties such as pH
and ionic strength. This has interesting practical implications.
For example, to increase an ultrafiltration membrane through-
put, one may increase the diffusion coefficient of the protein

Fig. 5 Reduced collective diffusion coefficient of BSA in aqueous KCl
solutions at pH 7, I ¼ 0.15 mol L�1 and T ¼ 298.15 K. The solid
triangles represent the experimental data measured by Phillies et al.25

using the quasi-elastic light scattering spectroscopy. The curves have
same meanings as in Fig. 2.

Fig. 6 Reduce collective diffusion coefficient of BSA in aqueous
NaOAc solutions at pH 7.4, I ¼ 1.5 mol L�1 and T ¼ 295.15 K. The
solid triangles represent the dynamic light scattering experimental data
taken fromMeechai et al.4 The curves have same meanings as in Fig. 2.

Fig. 7 Reduced diffusion coefficient of BSA in aqueous NaOAc
solutions at T ¼ 295.15 K. The solid triangles, solid circles and solid
squares represent the dynamic light scattering experimental data4 at pH
7.4 and I ¼ 0.15 mol L�1, pH 7.4 and I ¼ 1.5 mol L�1, and pH 4.7 and
I ¼ 0.1 mol L�1, respectively. The solid curves are calculated from the
hard-core two-Yukawa model coupled with the sedimentation coeffi-
cient equation for the disordered suspension of hard-spheres (eqn. (23))
and the dash curve is calculated from hard sphere model (eqn. (25)).
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being filtered, and this can be achieved by a reduction in
solution ionic strength according to the calculated results from
the present method. It is expected that the present method can
be used to predict collective diffusion coefficient of other
globular proteins in electrolyte solutions equally well.

Appendix

List of symbols

c Protein concentration/mol L�1

Cp Concentration of protein dispersion/g cm�3

D Dielectric constant of solvent
Dc Collective diffusion coefficient/m2 s�1

D0 Diffusion coefficient at infinite dilution/m2 s�1

e Charge of an electron ¼ 1.602 19 � 10�19 C
I Ionic strength, mol L�1

K(f) Sedimentation coefficient
kB Boltzmann constant ¼ 1.380 62 � 10�23 J K�1

M Molecular mass/g mol�1

Rp Hydrodynamic radius of globular protein/nm
r Distance between two interacting particles/nm
T Temperature/K
u(r) Interaction potential/J
v Specific volume/cm3 g�1

Z Osmotic compressibility factor
z Charge number
Greek letters
e Energy parameter/J
f Volume fraction of protein ¼ prps

3/6
k Debye screening parameter/nm�1

l Range parameter
P Osmotic pressure/Pa
r Number density/nm�3

s Hard-sphere diameter of a protein ¼ 2Rp

sdry Dry protein particle diameter/nm
Subscripts
c Collective
i Microion i
p Protein
þ Micro cation
— Micro anion
Superscripts
cc Charge–charge interaction
dis Dispersion interaction
Donnan Donnan effect
in Protein side of a membrane
out Microion side of a membrane
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